Necessary conditions for metrics in integral Bernstein-type inequalities

被引:8
|
作者
Glazyrina, Polina Yu. [1 ]
机构
[1] Ural State Univ, Dept Math & Mech, Ekaterinburg 620083, Russia
基金
俄罗斯基础研究基金会;
关键词
Algebraic polynomials; Trigonometric polynomials; Bernstein-type inequalities; Integral inequalities;
D O I
10.1016/j.jat.2009.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T(n) be the set of all trigonometric polynomials of degree at most n. Denote by Phi(+) the class of all functions phi: (0, infinity) -> R of the form phi(u) = psi(In u), where psi is nondecreasing and convex on (-infinity, infinity). In 1979, Arestov extended the classical Bernstein inequality parallel to T(n)(1)parallel to C <= n parallel to T(n)parallel to C, T(n) is an element of T(n), to metrics defined by phi is an element of Phi(+): integral(2 pi)(0) phi(vertical bar T(n)(1)(t)vertical bar)dt <= integral(2 pi)(0) phi(n vertical bar T(n)(t)vertical bar)dt, T(n) is an element of T(n). We study the question whether it is possible to extend the class Phi(+), and prove that under certain assumptions Phi(+) is the largest possible class. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1204 / 1210
页数:7
相关论文
共 50 条