Silk cocoon derived carbon and sulfur nanosheets as cathode material for Li-S battery application

被引:2
|
作者
Shastri, Mahesh [1 ]
Sriramoju, Jagadeesh Babu [1 ]
Muniyappa, Murthy [1 ]
Shetty, Manjunath [1 ]
Gangaraju, Vinay [1 ]
Sindhu Sree, Muralidhar [1 ]
Marlingaiah, Navyarani [2 ]
Kobayashi, Hiroaki [3 ]
Tomai, Takaaki [3 ]
Honma, Itaru [3 ]
Shivaramu, Prasanna D. [1 ]
Lokesh, S. V. [1 ]
Rangappa, Dinesh [1 ]
机构
[1] Visvesvaraya Technol Univ, Dept Appl Sci, Ctr Postgrad Studies, Muddenahalli Campus, Chikkballapura 562101, Bangalore Regio, India
[2] Dayananda Sagar Univ, Dept Basic & Appl Sci, Bengaluru 560078, India
[3] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
关键词
Sulfur nanosheets; Carbonized silk cocoon; Nanocomposite; Li-S Batteries; LITHIUM; NITROGEN; COMPOSITES; DESIGN;
D O I
10.1007/s42247-021-00218-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The lithium-sulfur cathode material is one of the potential electrode materials used in the Li-sulfur battery due to its high capacity. A rapid heating process was used to synthesis the sulfur nanosheets. Hierarchical porous carbon materials were prepared by carbonization of silk cocoon (sC). The sulfur nanosheets and carbonized silk cocoon nanocomposite were prepared by simple melt-diffusion method. The morphology and anchoring of sulfur nanosheets on carbonized silk cocoon were confirmed by SEM and TEM studies. The Raman spectroscopy measurement was employed to verify the formation of graphitic carbon nanostructure. The electrochemical performance of sulfur and carbonized silk cocoon (S-sC) nanocomposite sample showed 1231 mAh/g discharge capacity at 0.05 C. The capacity retention of the sample was about 997 mAh/g after 50 cycles. This nanocomposite material plays a vital role in improving electrochemical performance. The sulfur nanosheets anchored on silk fiber will be an ideal cathode candidate material for lithium-sulfur batteries.
引用
收藏
页码:1329 / 1337
页数:9
相关论文
共 50 条
  • [1] Silk cocoon derived carbon and sulfur nanosheets as cathode material for Li-S battery application
    Mahesh Shastri
    Jagadeesh Babu Sriramoju
    Murthy Muniyappa
    Manjunath Shetty
    Vinay Gangaraju
    Muralidhar Sindhu Sree
    Navyarani Marlingaiah
    Hiroaki Kobayashi
    Takaaki Tomai
    Itaru Honma
    Prasanna D. Shivaramu
    S. V. Lokesh
    Dinesh Rangappa
    Emergent Materials, 2021, 4 : 1329 - 1337
  • [2] Orange peel derived hierarchical porous carbon/sulfur composite cathode material for Li-S battery
    Pundir, Ayush
    Sil, Anjan
    BIOMASS & BIOENERGY, 2024, 180
  • [3] Rubber-Derived Sulfur Composite Cathode Material for Li-S/Li-ion Battery
    Yamano, Akihiro
    Kubo, Tatsuya
    Chujo, Fumiya
    Yamashita, Naoto
    Mukai, Takashi
    Morishita, Masanori
    Kojima, Toshikatsu
    Yanagida, Masahiro
    Hochi, Kazuo
    Furusawa, Satoshi
    Kikuchi, Naohiko
    Sakai, Tetsuo
    ELECTROCHEMISTRY, 2022, 90 (07)
  • [4] Yeast-Derived Sulfur Host for the Application of Sustainable Li-S Battery Cathode
    He, Zhanhui
    Dou, Xinyi
    Liu, Weilin
    Zhang, Luxian
    Lv, Laixi
    Liu, Jiehua
    Meng, Fancheng
    BATTERIES-BASEL, 2023, 9 (06):
  • [5] Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode
    Xin Zhuang
    Yingjia Liu
    Jian Chen
    Hao Chen
    Baolian Yi
    Journal of Energy Chemistry, 2014, 23 (03) : 391 - 396
  • [6] Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode
    Xin Zhuang
    Yingjia Liu
    Jian Chen
    Hao Chen
    Baolian Yi
    Journal of Energy Chemistry, 2014, (03) : 391 - 396
  • [7] Polyglycerol-functionalized microporous carbon/sulfur cathode for Li-S battery
    Yoshida, Luna
    Hakari, Takashi
    Matsui, Yukiko
    Ishikawa, Masashi
    ELECTROCHIMICA ACTA, 2022, 429
  • [8] Sepiolite Enfolded Sulfur/ZnO Binary Composite Cathode Material for Li-S Battery
    Kalaiselvi, Chelladurai
    Subadevi, Rengapillai
    Wang, Fu-Ming
    Sivakumar, Marimuthu
    FRONTIERS IN MATERIALS, 2020, 7
  • [9] A hierarchical carbon fiber/sulfur composite as cathode material for Li-S batteries
    Wu, Feng
    Shi, Lili
    Mu, Daobin
    Xu, Hongliang
    Wu, Borong
    CARBON, 2015, 86 : 146 - 155
  • [10] Composite cathode material based on sulfur and microporous carbon for Li-S batteries
    Novikova, Svetlana A.
    Voropaeva, Daria Yu.
    Li, Sergey A.
    Kulova, Tatiana L.
    Skundin, Alexander M.
    Stenina, Irina A.
    Yaroslavtsev, Andrey B.
    MENDELEEV COMMUNICATIONS, 2024, 34 (04) : 478 - 480