Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

被引:6
|
作者
He, Dongqing [1 ]
Wu, Min [1 ]
Jie, Pengyu [1 ]
机构
[1] Henan Univ, Sch Civil Engn & Architecture, Kaifeng 475004, Peoples R China
关键词
D O I
10.1088/1755-1315/100/1/012111
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Several common high elastic modulus fibers (steel fibers,basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%.Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit 'negative confounding effect' on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Experimental Study of the Mechanical Properties of Hybrid Fiber Reinforced Concrete
    Hua, Yuan
    Zhou, Taiquan
    MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 69 - 75
  • [2] Mechanical properties of hybrid fiber reinforced concrete
    Abbas, Rafik
    El-Rafey, Essam
    El-Shiekh, Aly
    Kamel, Amgad
    AEJ - Alexandria Engineering Journal, 2002, 41 (03): : 455 - 464
  • [3] Mechanical properties of hybrid fiber reinforced concrete
    Yurtseven, A. E.
    Yaman, I. O.
    Tokyay, M.
    MEASURING, MONITORING AND MODELING CONCRETE PROPERTIES, 2006, : 207 - +
  • [4] Experimental Study on Mechanical Properties of Hybrid Fiber-Reinforced Concrete
    Kinjawadekar, Trupti Amit
    Patil, Shantharam
    Nayak, Gopinatha
    Kinjawadekar, Amit
    Kulal, Shreyas A.
    Journal of Architectural Engineering, 1600, 30 (04):
  • [5] Orthogonal Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete
    Quan C.
    Jiao C.
    Yang Y.
    Li X.
    Zhang L.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2019, 22 (03): : 363 - 370
  • [6] Mechanical Properties of Layered Hybrid Fiber Reinforced Concrete
    袁海庆
    Journal of Wuhan University of Technology(Materials Science), 2003, (02) : 68 - 70
  • [7] Mechanical properties of layered hybrid fiber reinforced concrete
    Yuan Hai-qing
    Chen Jing-tao
    Zhu Ji-dong
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2003, 18 (2): : 68 - 70
  • [8] Mechanical properties of layered hybrid fiber reinforced concrete
    Yuan, HQ
    Chen, JT
    Zhu, JD
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2003, 18 (02): : 68 - 70
  • [9] Dynamic mechanical properties of hybrid fiber reinforced concrete
    Zhang, Yong
    Chen, Li
    Zhou, Dong-lei
    INTERNATIONAL JOURNAL OF PROTECTIVE STRUCTURES, 2022, 13 (03) : 579 - 598
  • [10] Mechanical properties of hybrid fiber reinforced coral concrete
    Liu, Bing
    Zhang, Xuanyu
    Ye, Junpeng
    Liu, Xiaoyan
    Deng, Zhiheng
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16