Retrieval and classification methods for textured 3D models: a comparative study

被引:27
|
作者
Biasotti, S. [1 ]
Cerri, A. [1 ]
Aono, M. [6 ]
Ben Hamza, A. [4 ]
Garro, V. [2 ,3 ]
Giachetti, A. [3 ]
Giorgi, D. [2 ,5 ]
Godil, A. [5 ]
Li, C.
Sanada, C. [6 ]
Spagnuolo, M. [1 ]
Tatsuma, A. [6 ]
Velasco-Forero, S. [7 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Genoa, Italy
[2] CNR, Ist Sci & Tecnol Informaz A Faedo, Pisa, Italy
[3] Univ Verona, Dipartimento Informat, I-37100 Verona, Italy
[4] Concordia Univ, Montreal, PQ, Canada
[5] NIST, Gaithersburg, MD 20899 USA
[6] Toyohashi Univ Technol, Dept Comp Sci & Engn, Toyohashi, Aichi, Japan
[7] Natl Univ Singapore, Dept Math, 10 Kent Ridge Crescent, Singapore 117548, Singapore
来源
VISUAL COMPUTER | 2016年 / 32卷 / 02期
关键词
Shape retrieval; Shape classification; Textured 3D models; SHAPE RETRIEVAL; COMBINING COLOR; RADIAL SYMMETRY; DESCRIPTORS; SURFACES; FEATURES; GEOMETRY; IMAGES;
D O I
10.1007/s00371-015-1146-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a comparative study of six methods for the retrieval and classification of textured 3D models, which have been selected as representative of the state of the art. To better analyse and control how methods deal with specific classes of geometric and texture deformations, we built a collection of 572 synthetic textured mesh models, in which each class includes multiple texture and geometric modifications of a small set of null models. Results show a challenging, yet lively, scenario and also reveal interesting insights into how to deal with texture information according to different approaches, possibly working in the CIELab as well as in modifications of the RGB colour space.
引用
收藏
页码:217 / 241
页数:25
相关论文
共 50 条
  • [1] Retrieval and classification methods for textured 3D models: a comparative study
    S. Biasotti
    A. Cerri
    M. Aono
    A. Ben Hamza
    V. Garro
    A. Giachetti
    D. Giorgi
    A. Godil
    C. Li
    C. Sanada
    M. Spagnuolo
    A. Tatsuma
    S. Velasco-Forero
    The Visual Computer, 2016, 32 : 217 - 241
  • [2] Subspace methods for retrieval of general 3D models
    Dutagaci, Helin
    Sankur, Buelent
    Yemez, Yuecel
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (08) : 865 - 886
  • [3] A Comparative Study of Object Classification Methods Using 3D Zernike Moment on 3D Point Clouds
    Ozbay, Erdal
    Cinar, Ahmet
    TRAITEMENT DU SIGNAL, 2019, 36 (06) : 549 - 555
  • [4] Classification of Textured 3D Mesh Models Based on Multiview 2D Mapping
    Qu F.
    Hu Z.
    Zhang Y.
    Zhang J.
    Wu G.
    Journal of Geo-Information Science, 2024, 26 (03) : 654 - 665
  • [5] Progressive coding of textured 3D models
    Nagatomo, K
    Yoshikai, D
    Okuda, M
    Ikehara, M
    Takahashi, S
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : 357 - 360
  • [6] Recognition methods for 3D textured surfaces
    Cula, OG
    Dana, KJ
    HUMAN VISION AND ELECTRONIC IMAGING VI, 2001, 4299 : 209 - 220
  • [7] Automatic Reconstruction of Textured 3D Models
    Pitzer, Benjamin
    Kammel, Soeren
    DuHadway, Charles
    Becker, Jan
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 3486 - 3493
  • [8] 3D models retrieval and indexing
    Mahmoudi, S
    Daoudi, M
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 972 - 975
  • [9] Comparative Study on Two Methods Used in Obtaining 3D Printed Dental Models
    Pantea, Mihaela
    Ciocoiu, Robert
    Tancu, Ana Maria Cristina
    Nina, Daniela-Madalina
    Petre, Alexandru
    Antoniac, Iulian Vasile
    Melescanu-Imre, Marina
    MATERIALE PLASTICE, 2019, 56 (04) : 812 - 816
  • [10] A comparative study of two pelvimetry methods: 3D models based on CT and MRI
    Shen, Ping
    Fu, Jiaxin
    Zhang, Wenling
    Chen, Chunlin
    Liu, Ping
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2024, 296 : 286 - 291