New Type of Takagi-Sugeno Fuzzy Inference System as Universal Approximator

被引:9
|
作者
Anikin, Igor
Zinoviev, Igor
机构
来源
ADVANCED MATERIALS, MECHANICS AND INDUSTRIAL ENGINEERING | 2014年 / 598卷
关键词
fuzzy logic; fuzzy regression; Takagi-Sugeno fuzzy inference system; KNOWLEDGE DISCOVERY; LOGIC; SETS;
D O I
10.4028/www.scientific.net/AMM.598.453
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new type of fuzzy inference systems (FIS) is presenting. It is based on Takagi-Sugeno fuzzy inference system. New FIS has been called the enhanced fuzzy regression (EFR). In opposition to the Takagi-Sugeno, new type of FIS has fuzzy coefficients in right parts of the fuzzy rules. Fuzzy approximation theorem has been proved for the EFR. We have suggested learning procedure for EFR inference system.
引用
收藏
页码:453 / 458
页数:6
相关论文
共 50 条
  • [1] Fuzzy Control Based on New Type of Takagi-Sugeno Fuzzy Inference System
    Anikin, Igor V.
    Zinoviev, Igor P.
    2015 INTERNATIONAL SIBERIAN CONFERENCE ON CONTROL AND COMMUNICATIONS (SIBCON), 2015,
  • [2] Universal fuzzy system to Takagi-Sugeno fuzzy system compiler
    Frias-Martinez, E
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 305 - 309
  • [3] Defuzzification Methods in Intuitionistic Fuzzy Inference Systems of Takagi-Sugeno Type
    Hajek, Petr
    Olej, Vladimir
    2014 11TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2014, : 232 - 236
  • [4] A Takagi-Sugeno Fuzzy Inference System for Developing a Sustainability Index of Biomass
    Cavallaro, Fausto
    SUSTAINABILITY, 2015, 7 (09): : 12359 - 12371
  • [5] General Takagi-Sugeno fuzzy systems are universal approximators
    Ying, H
    1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 819 - 823
  • [6] Toward Improving the Fuzzy KNN Algorithm Based on Takagi-Sugeno Fuzzy Inference System
    Ramirez, Eduardo
    Melin, Patricia
    Prado-Arechiga, German
    FUZZY INFORMATION PROCESSING 2020, 2022, 1337 : 237 - 252
  • [7] Takagi-Sugeno Type Fuzzy Automaton Model
    Grantner, Janos L.
    Fodor, George A.
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [8] Takagi-Sugeno fuzzy inference system for modeling stage-discharge relationship
    Lohani, A. K.
    Goel, N. K.
    Bhatia, K. K. S.
    JOURNAL OF HYDROLOGY, 2006, 331 (1-2) : 146 - 160
  • [9] Hierarchical Takagi-Sugeno type fuzzy system for diabetes mellitus forecasting
    Sharifi, Arash
    Vosolipour, Asiyeh
    Sh, Mahdi Aliyari
    Teshnehlab, Mohammad
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1265 - +
  • [10] Comparison of Fuzzy Operators for IF-Inference Systems of Takagi-Sugeno Type in Ozone Prediction
    Olej, Vladimir
    Hajek, Petr
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT II, 2011, 364 : 92 - 97