Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise

被引:32
|
作者
Abend, M. [1 ]
Amundson, S. A. [2 ]
Badie, C. [3 ]
Brzoska, K. [4 ]
Hargitai, R. [5 ]
Kriehuber, R. [6 ]
Schuele, S. [1 ]
Kis, E. [5 ]
Ghandhi, S. A. [2 ]
Lumniczky, K. [5 ]
Morton, S. R. [2 ]
O'Brien, G. [3 ]
Oskamp, D. [6 ]
Ostheim, P. [1 ]
Siebenwirth, C. [1 ]
Shuryak, I. [2 ]
Szatmari, T. [5 ]
Unverricht-Yeboah, M. [6 ]
Ainsbury, E. [7 ]
Bassinet, C. [8 ]
Kulka, U. [9 ]
Oestreicher, U. [9 ]
Ristic, Y. [8 ]
Trompier, F. [8 ]
Wojcik, A. [10 ]
Waldner, L. [11 ]
Port, M. [1 ]
机构
[1] Univ Ulm, Bundeswehr Inst Radiobiol, Neuherbergstr 11, D-80937 Munich, Germany
[2] Columbia Univ Irving Med Ctr CUIMC, Ctr Radiol Res, New York, NY USA
[3] Publ Hlth England Chilton, Radiat Effects Dept, Ctr Radiat Chem & Environm Hazards, Canc Mech & Biomarkers, Didcot, Oxon, England
[4] Ctr Radiobiol & Biol Dosimetry, Inst Nucl Chem & Technol, Warsaw, Poland
[5] Natl Publ Hlth Ctr NPHC, Radiat Med Unit, Budapest, Hungary
[6] Forschungszentrum Julich FZJ, Dept Safety & Radiat Protect, Julich, Germany
[7] Publ Hlth England Chilton, Ctr Radiat Chem & Environm Hazards, Didcot, Oxon, England
[8] PSE SANTE SDOS LDRI, Inst Radiat Protect & Nucl Safety, F-92262 Fontenay Aux Roses, France
[9] Bundesamt Strahlenschutz BfS, Fed Off Radiat Protect, Oberschleissheim, Germany
[10] Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Ctr Radiat Protect Res, Stockholm, Sweden
[11] Lund Univ, Dept Translat Med, Med Radiat Phys, Malmo, Sweden
关键词
PERIPHERAL-BLOOD LYMPHOCYTES; RNA EXPRESSION; EX-VIVO; IN-VIVO; BIOMARKERS; RESPONSES; TIME; IRRADIATION; SIGNATURES; PROFILES;
D O I
10.1038/s41598-021-88403-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 degrees C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in >= 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 degrees C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 degrees C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 degrees C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
引用
收藏
页数:15
相关论文
共 3 条
  • [1] Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
    M. Abend
    S. A. Amundson
    C. Badie
    K. Brzoska
    R. Hargitai
    R. Kriehuber
    S. Schüle
    E. Kis
    S. A. Ghandhi
    K. Lumniczky
    S. R. Morton
    G. O’Brien
    D. Oskamp
    P. Ostheim
    C. Siebenwirth
    I. Shuryak
    T. Szatmári
    M. Unverricht-Yeboah
    E. Ainsbury
    C. Bassinet
    U. Kulka
    U. Oestreicher
    Y. Ristic
    F. Trompier
    A. Wojcik
    L. Waldner
    M. Port
    Scientific Reports, 11
  • [2] RENEB Inter-Laboratory Comparison 2021: The Gene Expression Assay
    Abend, M.
    Amundson, S. A.
    Badie, C.
    Brzoska, K.
    Kriehuber, R.
    Lacombe, J.
    Lopez-Riego, M.
    Lumniczky, K.
    Endesfelder, D.
    O'Brien, G.
    Doucha-Senf, S.
    Ghandhi, S. A.
    Hargitai, R.
    Kis, E.
    Lundholm, L.
    Oskamp, D.
    Ostheim, P.
    Schuele, S.
    Schwanke, D.
    Shuryak, I.
    Siebenwith, C.
    Unverricht-Yeboah, M.
    Wojcik, A.
    Yang, J.
    Zenhausern, F.
    Port, M.
    RADIATION RESEARCH, 2023, 199 (06) : 598 - 615
  • [3] The 2019-2020 EURADOS WG10 and RENEB Field Test of Retrospective Dosimetry Methods in a Small-Scale Incident Involving Ionizing Radiation
    Waldner, L.
    Bernhardsson, C.
    Woda, C.
    Trompier, F.
    Van Hoey, O.
    Kulka, U.
    Oestreicher, U.
    Bassinet, C.
    Raaf, C.
    Discher, M.
    Endesfelder, D.
    Eakins, J. S.
    Gregoire, E.
    Wojcik, A.
    Ristic, Y.
    Kim, H.
    Lee, J.
    Yu, H.
    Kim, M. C.
    Abend, M.
    Ainsbury, E.
    RADIATION RESEARCH, 2021, 195 (03) : 253 - 264