Turing's Diffusive Threshold in Random Reaction-Diffusion Systems

被引:27
|
作者
Haas, Pierre A. [1 ]
Goldstein, Raymond E. [2 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
PATTERN-FORMATION; STABILITY-CRITERIA; INSTABILITIES; MECHANISMS; NETWORKS;
D O I
10.1103/PhysRevLett.126.238101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Turing instabilities of reaction-diffusion systems can only arise if the diffusivities of the chemical species are sufficiently different. This threshold is unphysical in most systems with N = 2 diffusing species, forcing experimental realizations of the instability to rely on fluctuations or additional nondiffusing species. Here, we ask whether this diffusive threshold lowers for N > 2 to allow "true" Turing instabilities. Inspired by May's analysis of the stability of random ecological communities, we analyze the probability distribution of the diffusive threshold in reaction-diffusion systems defined by random matrices describing linearized dynamics near a homogeneous fixed point. In the numerically tractable cases N <= 6, we find that the diffusive threshold becomes more likely to be smaller and physical as N increases, and that most of these many-species instabilities cannot be described by reduced models with fewer diffusing species.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Turing instability in sub-diffusive reaction-diffusion systems
    Nec, Y.
    Nepomnyashchy, A. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (49) : 14687 - 14702
  • [2] Turing instabilities in reaction-diffusion systems with cross diffusion
    Duccio Fanelli
    Claudia Cianci
    Francesca Di Patti
    The European Physical Journal B, 2013, 86
  • [3] Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion
    Zemskov, E. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 117 (04) : 764 - 769
  • [4] Turing instabilities in reaction-diffusion systems with cross diffusion
    Fanelli, Duccio
    Cianci, Claudia
    Di Patti, Francesca
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (04):
  • [5] Turing instability in reaction-diffusion systems with nonlinear diffusion
    E. P. Zemskov
    Journal of Experimental and Theoretical Physics, 2013, 117 : 764 - 769
  • [6] DIFFUSIVE STABILITY OF OSCILLATIONS IN REACTION-DIFFUSION SYSTEMS
    Gallay, Thierry
    Scheel, Arnd
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (05) : 2571 - 2598
  • [7] conditions for Turing and wave instabilities in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan R. R.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (03)
  • [8] On the speed of propagation in Turing patterns for reaction-diffusion systems
    Klika, Vaclav
    Gaffney, Eamonn A.
    Maini, Philip K.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [9] ON TURING-HOPF INSTABILITIES IN REACTION-DIFFUSION SYSTEMS
    Ricard, Mariano Rodriguez
    BIOMAT 2007, 2008, : 293 - 313
  • [10] On Turing Instability in Nonhomogeneous Reaction-Diffusion CNN's
    Goras, Liviu
    Ungureanu, Paul
    Chua, Leon O.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (10) : 2748 - 2760