Minimum distance estimators in extreme value distributions

被引:5
|
作者
Dietrich, D [1 ]
Husler, J [1 ]
机构
[1] UNIV BERN,DEPT MATH STAT,CH-3012 BERN,SWITZERLAND
关键词
extreme value distribution; Gumbel distribution; minimum distance; maximum likelihood estimator; censored samples; efficiency; robustness;
D O I
10.1080/03610929608831725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define minimum distance estimators for the parameters of the extreme value distribution G(0) based on the Cramer-von-Mises distance. These estimators are rather robust and consistent, but asymptotically less efficient than the maximum likelihood estimators which are not robust. A small simulation study for finite sample size show that under G(0) the finite efficiency of the minimum distance estimators is rather similar to the maximum likelihood ones.
引用
收藏
页码:695 / 703
页数:9
相关论文
共 50 条