A Note on Bayesian Inference After Multiple Imputation

被引:78
|
作者
Zhou, Xiang [1 ,2 ]
Reiter, Jerome P. [2 ]
机构
[1] Duke Univ, Dept Neurobiol, Durham, NC 27708 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
来源
AMERICAN STATISTICIAN | 2010年 / 64卷 / 02期
关键词
Missing; Nonresponse; Sample;
D O I
10.1198/tast.2010.09109
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is aimed at practitioners who plan to use Bayesian inference on multiply-imputed datasets in settings where posterior distributions of the parameters of interest are not approximately Gaussian. We seek to steer practitioners away from a naive approach to Bayesian inference, namely estimating the posterior distribution in each completed dataset and averaging functionals of these distributions. We demonstrate that this approach results in unreliable inferences. A better approach is to mix draws from the posterior distributions from each completed dataset, and use the mixed draws to summarize the posterior distribution. Using simulations, we show that for this second approach to work well, the number of imputed datasets should be large. In particular, five to ten imputed datasets which is the standard recommendation for multiple imputation is generally not enough to result in reliable Bayesian inferences.
引用
收藏
页码:159 / 163
页数:5
相关论文
共 50 条
  • [1] A note on approximate Bayesian bootstrap imputation
    Kim, JK
    [J]. BIOMETRIKA, 2002, 89 (02) : 470 - 477
  • [2] Overview of multiple imputation and repeated-imputation inference (RII) techniques
    Montalto, CP
    Sung, J
    [J]. CONSUMER INTERESTS ANNUAL, VOL 43: 43RD ANNUAL CONFERENCE OF THE AMERICAN COUNCIL ON CONSUMER INTERESTS, 1997, : 167 - 167
  • [3] A note on Bayesian inference in asset pricing
    Knight, JL
    Satchell, SE
    [J]. ECONOMETRIC THEORY, 2001, 17 (02) : 475 - 482
  • [4] Bootstrap inference when using multiple imputation
    Schomaker, Michael
    Heumann, Hristian
    [J]. STATISTICS IN MEDICINE, 2018, 37 (14) : 2252 - 2266
  • [5] Multiple imputation for longitudinal data using Bayesian lasso imputation model
    Yamaguchi, Yusuke
    Yoshida, Satoshi
    Misumi, Toshihiro
    Maruo, Kazushi
    [J]. STATISTICS IN MEDICINE, 2022, 41 (06) : 1042 - 1058
  • [6] Bayesian Inference for Multiple Datasets
    Retkute, Renata
    Thurston, William
    Gilligan, Christopher A.
    [J]. STATS, 2024, 7 (02): : 434 - 444
  • [7] Noise correction using Bayesian multiple imputation
    Van Hulse, Jason
    Khoshgoftaar, Taghi M.
    Seiffert, Chris
    Zhao, Lili
    [J]. IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 478 - +
  • [8] A Note on Listwise Deletion versus Multiple Imputation
    Pepinsky, Thomas B.
    [J]. POLITICAL ANALYSIS, 2018, 26 (04) : 480 - 488
  • [9] A note on multiple imputation for method of moments estimation
    Yang, S.
    Kim, J. K.
    [J]. BIOMETRIKA, 2016, 103 (01) : 244 - 251
  • [10] A note on multiple imputation under complex sampling
    Kim, J. K.
    Yang, S.
    [J]. BIOMETRIKA, 2017, 104 (01) : 221 - 228