The regulator problem with indefinite quadratic cost for boundary control systems: the finite horizon case

被引:13
|
作者
Bucci, F
Pandolfi, L
机构
[1] Univ Florence, Dipartimento Matemat Applicata, I-50139 Florence, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
quadratic regulator problem; boundary control; finite horizon; hyperbolic systems; exact controllability;
D O I
10.1016/S0167-6911(99)00091-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the finite horizon non-standard LQ-problem for an abstract dynamics, which models a large class of hyperbolic-like partial differential equations. We provide necessary/sufficient conditions for finiteness of the value function corresponding to the control problem. Sharpness of sufficient conditions is shown by means of counterexamples. The specific features of the finite, in contrast to infinite, horizon case are illustrated. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 50 条
  • [1] Finite Horizon Linear Quadratic Gaussian Density Regulator with Wasserstein Terminal Cost
    Halder, Abhishek
    Wendel, Eric D. B.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 7249 - 7254
  • [2] Infinite Horizon Nonlinear Quadratic Cost Regulator
    Almubarak, Hassan
    Sadegh, Nader
    Taylor, David G.
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 5570 - 5575
  • [3] Infinite-horizon linear-quadratic regulator problems for nonautonomous parabolic systems with boundary control
    Acquistapace, P
    Terreni, B
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (01) : 1 - 30
  • [4] Finite and infinite horizon indefinite linear quadratic optimal control for discrete-time singular Markov jump systems
    Li, Yichun
    Ma, Shuping
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (17): : 8993 - 9022
  • [5] Optimal quadratic solution for the non-Gaussian finite-horizon regulator problem
    Germani, Alfredo
    Mavelli, Gabriella
    [J]. Systems and Control Letters, 1999, 38 (4-5): : 321 - 331
  • [6] Optimal quadratic solution for the non-Gaussian finite-horizon regulator problem
    Germani, A
    Mavelli, G
    [J]. SYSTEMS & CONTROL LETTERS, 1999, 38 (4-5) : 321 - 331
  • [7] Infinite horizon indefinite stochastic linear quadratic control for discrete-time systems
    Weihai ZHANG
    Yan LI
    Xikui LIU
    [J]. Control Theory and Technology, 2015, 13 (03) : 230 - 237
  • [8] Structured exploration in the finite horizon linear quadratic dual control problem
    Iannelli, Andrea
    Khosravi, Mohammad
    Smith, Roy S.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 959 - 964
  • [9] Infinite horizon indefinite stochastic linear quadratic control for discrete-time systems
    Zhang W.
    Li Y.
    Liu X.
    [J]. Control Theory and Technology, 2015, 13 (03) : 230 - 237
  • [10] Numerical solution of the finite horizon stochastic linear quadratic control problem
    Damm, Tobias
    Mena, Hermann
    Stillfjord, Tony
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (04)