k-NN Regression on Functional Data with Incomplete Observations

被引:0
|
作者
Reddi, Sashank J. [1 ]
Poczos, Barnabis [1 ]
机构
[1] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study a general version of regression where each covariate itself is a functional data such as distributions or functions. In real applications, however, typically we do not have direct access to such data; instead only some noisy estimates of the true covariate functions/distributions are available to us. For example, when each covariate is a distribution, then we might not be able to directly observe these distributions, but it can be assumed that i.i.d. sample sets from these distributions are available. In this paper we present a general framework and a k-NN based estimator for this regression problem. We prove consistency of the estimator and derive its convergence rates. We further show that the proposed estimator can adapt to the local intrinsic dimension in our case and provide a simple approach for choosing k. Finally, we illustrate the applicability of our framework with numerical experiments.
引用
收藏
页码:692 / 701
页数:10
相关论文
共 50 条
  • [1] Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data*
    Mohammedi, Mustapha
    Bouzebda, Salim
    Laksaci, Ali
    Bouanani, Oussama
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (09) : 3143 - 3168
  • [2] Music Tempo Estimation With k-NN Regression
    Eronen, Antti J.
    Klapuri, Anssi P.
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (01): : 50 - 57
  • [3] Feature projection k-NN classifier model for imbalanced and incomplete medical data
    Porwik, Piotr
    Orczyk, Tomasz
    Lewandowski, Marcin
    Cholewa, Marcin
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2016, 36 (04) : 644 - 656
  • [4] LOCAL PROPERTIES OF K-NN REGRESSION ESTIMATES
    MACK, YP
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (03): : 311 - 323
  • [5] A Hierarchical K-NN Classifier for Textual Data
    Duwairi, Rehab
    Al-Zubaidi, Rania
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2011, 8 (03) : 251 - 259
  • [6] Nonparametric fuzzy regression -: k-NN and kernel smoothing techniques
    Cheng, CB
    Lee, ES
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (3-4) : 239 - 251
  • [7] K-NN Classifier for Data Confidentiality in Cloud Computing
    Zardari, Munwar Ali
    Jung, Low Tang
    Zakaria, Nordin
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2014,
  • [8] Efficient k-NN search on streaming data series
    Liu, XY
    Ferhatosmanoglu, H
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2003, 2750 : 83 - 101
  • [9] Fast k-NN classification for multichannel image data
    Warfield, S
    [J]. PATTERN RECOGNITION LETTERS, 1996, 17 (07) : 713 - 721
  • [10] A k-NN Query Method Over Encrypted Data
    Zhang, Zhiqiang
    Xin, Lijie
    Xie, Xiaoqin
    Pan, Haiwei
    [J]. PROCEEDINGS OF THE 2018 IEEE 22ND INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN ((CSCWD)), 2018, : 164 - 171