Anisotropies in Compressible MHD Turbulence: Probing Magnetic Fields and Measuring Magnetization

被引:24
|
作者
Hu, Yue [1 ,2 ]
Xu, Siyao [3 ]
Lazarian, A. [2 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA
[3] Inst Adv Study, 1 Einstein Dr, Princeton, NJ 08540 USA
来源
ASTROPHYSICAL JOURNAL | 2021年 / 911卷 / 01期
关键词
MAGNETOHYDRODYNAMIC TURBULENCE; VELOCITY ANISOTROPY; INTERSTELLAR-MEDIUM; NEUTRAL HYDROGEN; STAR-FORMATION; DENSITY-FLUCTUATIONS; MOLECULAR CLOUDS; POWER SPECTRUM; GRADIENT; SIMULATIONS;
D O I
10.3847/1538-4357/abea18
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Probing magnetic fields in the interstellar medium (ISM) is notoriously challenging. Motivated by the modern theories of magnetohydrodynamic (MHD) turbulence and turbulence anisotropy, we introduce the Structure Function Analysis (SFA) as a new approach to measure the magnetic-field orientation and estimate the magnetization. We analyze the statistics of turbulent velocities in three-dimensional compressible MHD simulations through the second-order structure functions in both local and global reference frames. In the sub-Alfvenic turbulence with the magnetic energy larger than the turbulent energy, the SFA of turbulent velocities measured in the directions perpendicular and parallel to the magnetic field can be significantly different. Their ratio has a power-law dependence on the Alfven Mach number M (A), which is inversely proportional to the magnetic-field strength. We demonstrate that the anisotropic structure functions of turbulent velocities can be used to estimate both the orientation and strength of magnetic fields. With turbulent velocities measured using different tracers, our approach can be generally applied to probing the magnetic fields in the multiphase ISM.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Probing the nature of dissipation in compressible MHD turbulence
    Richard, Thibaud
    Lesaffre, Pierre
    Falgarone, Edith
    Lehmann, Andrew
    [J]. Astronomy and Astrophysics, 2022, 664
  • [2] Probing the nature of dissipation in compressible MHD turbulence
    Richard, Thibaud
    Lesaffre, Pierre
    Falgarone, Edith
    Lehmann, Andrew
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 664
  • [3] The correlation between magnetic pressure and density in compressible MHD turbulence
    Passot, T
    Vázquez-Semadeni, E
    [J]. ASTRONOMY & ASTROPHYSICS, 2003, 398 (03) : 845 - 855
  • [4] Measuring Magnetization with Rotation Measures and Velocity Centroids in Supersonic MHD Turbulence
    Xu, Siyao
    Hu, Yue
    [J]. ASTROPHYSICAL JOURNAL, 2021, 910 (02):
  • [5] Evolution of magnetic fields in the IGM: kinetic MHD turbulence
    de Lima, Reinaldo S.
    de Gouveia Dal Pino, E. M.
    Lazarian, A.
    Falceta-Goncalves, D.
    [J]. COSMIC MAGNETIC FIELDS: FROM PLANETS, TO STARS AND GALAXIES, 2009, (259): : 563 - +
  • [6] Measuring nuclear magnetization in strong magnetic fields
    Harita, A
    Tayama, T
    Onimaru, T
    Sakakibara, T
    [J]. PHYSICA B-CONDENSED MATTER, 2003, 329 : 1582 - 1585
  • [7] Scaling relations of compressible MHD turbulence
    Kowal, Grzegorz
    Lazarian, A.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 666 (02): : L69 - L72
  • [8] Generation of compressible modes in MHD turbulence
    Jungyeon Cho
    A. Lazarian
    [J]. Theoretical and Computational Fluid Dynamics, 2005, 19 : 127 - 157
  • [9] Density statistics of compressible MHD turbulence
    Lazarian, A.
    Kowal, G.
    Beresnyak, A.
    [J]. NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2007, 2008, 385 : 3 - 11
  • [10] Generation of compressible modes in MHD turbulence
    Cho, JY
    Lazarian, A
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2005, 19 (02) : 127 - 157