Estimating covariance and precision matrices along subspaces

被引:2
|
作者
Kereta, Zeljko [1 ]
Klock, Timo [1 ]
机构
[1] Simula Res Lab, Machine Inteligence Dept, Oslo, Norway
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
关键词
Covariance matrix; finite sample bounds; dimension reduction; rate of convergence; ordinary least squares; single-index model; precision matrix; SINGLE-INDEX; DIMENSION-REDUCTION; EFFICIENT ESTIMATION; OPTIMAL RATES; REGRESSION; CONVERGENCE; SELECTION; MODELS; BOUNDS;
D O I
10.1214/20-EJS1782
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the accuracy of estimating the covariance and the precision matrix of a D-variate sub-Gaussian distribution along a prescribed subspace or direction using the finite sample covariance. Our results show that the estimation accuracy depends almost exclusively on the components of the distribution that correspond to desired subspaces or directions. This is relevant and important for problems where the behavior of data along a lower-dimensional space is of specific interest, such as dimension reduction or structured regression problems. We also show that estimation of precision matrices is almost independent of the condition number of the covariance matrix. The presented applications include direction-sensitive eigenspace perturbation bounds, relative bounds for the smallest eigenvalue, and the estimation of the single-index model. For the latter, a new estimator, derived from the analysis, with strong theoretical guarantees and superior numerical performance is proposed.
引用
收藏
页码:554 / 588
页数:35
相关论文
共 50 条
  • [1] ESTIMATING COVARIANCE MATRICES
    LOH, WL
    [J]. ANNALS OF STATISTICS, 1991, 19 (01): : 283 - 296
  • [2] Covariance and precision modeling in shared multiple subspaces
    Dharanipragada, S
    Visweswariah, K
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS: SPEECH PROCESSING I, 2003, : 856 - 859
  • [3] ADVANCES IN ESTIMATING COVARIANCE MATRICES
    Menchero, Jose
    Ji, Lei
    [J]. JOURNAL OF INVESTMENT MANAGEMENT, 2021, 19 (03): : 60 - 80
  • [4] Estimating the covariance of random matrices
    Youssef, Pierre
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 26
  • [5] Estimating high-dimensional covariance and precision matrices under general missing dependence
    Park, Seongoh
    Wang, Xinlei
    Lim, Johan
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4868 - 4915
  • [6] ESTIMATING COVARIANCE MATRICES-II
    LOH, WL
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (02) : 163 - 174
  • [7] Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation
    Cai, T. Tony
    Ren, Zhao
    Zhou, Harrison H.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1 - 59
  • [8] Estimating sparse precision matrices
    Padmanabhan, Nikhil
    White, Martin
    Zhou, Harrison H.
    O'Connell, Ross
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) : 1567 - 1576
  • [9] An overview of the estimation of large covariance and precision matrices
    Fan, Jianqing
    Liao, Yuan
    Liu, Han
    [J]. ECONOMETRICS JOURNAL, 2016, 19 (01): : C1 - C32
  • [10] On estimating cosmology-dependent covariance matrices
    Morrison, Christopher B.
    Schneider, Michael D.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (11):