Structural evolution and ligand effects of (Au1L2)n, (Au2L3)n, and (Au3L4)n [n =1-3, L = SCH3,P(CH3)2,PH2,Cl] clusters

被引:1
|
作者
Ma, Miaomiao [1 ]
Liu, Liren [1 ]
Zhu, Hengjiang [1 ,2 ]
Lu, Junzhe [1 ,2 ]
Tan, Guiping [1 ]
机构
[1] Xinjiang Normal Univ, Coll Phys & Elect Engn, Urumqi, Peoples R China
[2] Key Lab Mineral Luminescence Mat & Micro Struct X, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
Density-functional theory; particle swarm optimisation algorithm; ligand effects; structural evolution; GOLD NANOCLUSTERS; THIOLATE; STABILITY; INSIGHTS; SURFACE;
D O I
10.1080/08927022.2019.1630736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we present a density-functional theory with a particle swarm optimisation algorithm to research the progress of the ligand effects of the gold (Au) structures and growth process of the [Au1L2](n), [Au2L3](n) and [Au3L4](n) (n = 1-3, L = SCH3, PH2, P(CH3)(2),Cl) nanoclusters. Changing of ligand atoms induces minor changes in the Au and Au-L bond lengths. When L = Cl, with increasing n, the size of the Au cores tends to increase, while when L = PH2, with increasing n, the size of Au cores decreases and the length of the ligand protection increases. We give a detailed comparison of the average binding energy, stability, and aromaticity of these clusters and further explain the diverse role of ligand substitution. The order of stability for each ligand, Cl > PH2> SCH3>P(CH3)(2), is determined by the average binding energy and the difference between the atomic energies. In addition, the influence of strong Au-Au interactions will weaken the aromaticity of the structure. New nanoclusters that can be widely applied in other fields, and designed by leveraging the ligand effects of the Au structural evolution characteristics.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Size evolution and ligand effects on the structures and stability of (AuL)n (L = Cl, SH, SCH3, PH2, P(CH3)2, n=1-13) clusters
    Liu, Yao
    Tian, Zhimei
    Cheng, Longjiu
    RSC ADVANCES, 2016, 6 (06) : 4705 - 4712
  • [2] Size Evolution of the 2e-Superatom in Ligand-Protected Au Nanoclusters: Au2-(AuL)1-12 (L = CI, SH, SCH3, PH2, and P(CH3)2)
    Liu, Wangdan
    Cheng, Longjiu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (04): : 2432 - 2438
  • [3] The effective operator for the Auger l1N1 l2N2 l3N3 → l1N1+1l2N2-1l3N3-1 εl4 transitions
    Merkelis, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 235 : 184 - 191
  • [4] MASS-SPECTROMETRIC STUDY OF (CH3)4-NSI(SCH3)N (N = 1-4) AND (CH3)2SI(-SCH2-)2
    NAESSENS, LA
    CLAEYS, EG
    HOSTE, S
    VANDERKELEN, GP
    BULLETIN DES SOCIETES CHIMIQUES BELGES, 1983, 92 (09): : 753 - 765
  • [5] Spectroscopic classification of the 5p5n1l1n2l2n3l3 autoionizing states in Ba atoms
    Hrytsko, V.
    Kupliauskiene, A.
    Borovik, A.
    XXIX INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC, AND ATOMIC COLLISIONS (ICPEAC2015), PTS 1-12, 2015, 635
  • [6] REACTIONS OF METHYLPHOSPHINES (CH3)NPCL3-N(N = 1-3) WITH METHYLCHLOROSULFANE AND CRYSTAL-STRUCTURES OF (CH3)3PSCH3+I- AND CH3P(SCH3)CL2+SBCL6-
    MINKWITZ, R
    MEDGER, G
    GRETH, R
    PREUT, H
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 1992, 47 (12): : 1653 - 1660
  • [7] HYPERFINE-STRUCTURE OF CONFIGURATION L-1(N1)L-2(N2)L-3(N3)
    SIEFART, E
    ANNALEN DER PHYSIK, 1977, 34 (02) : 150 - 158
  • [8] Evolution of 4e-Superatom Networks in Au4(AuL)1-12 Nanoclusters (L = CI, SH, PH2, SCH3)
    Tian, Zhimei
    Cheng, Longjiu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (37): : 20458 - 20467
  • [9] Crystal structure of bis(4-methylimidizide)bis(4-methylimidizole)-gold(III)-methanol (1/2), {[(CH3)C3N2N2]2[(CH3)C3N2H3]2Au}•2CH3OH
    Staples, RJ
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2001, 216 (02): : 311 - 312
  • [10] Exploring the bonding and aromaticity of [Au 3 {C 2 H 2 N 2 E(L) 2 } 3 ] + (E = Si, Ge and L = -CH 3,-H,-CF 3, -NO 2 ): Trinuclear gold superalkali complexes
    Das, Subhra
    Sinha, Swapan
    Roymahapatra, Gourisankar
    De, Gobinda Chandra
    Giri, Santanab
    INORGANICA CHIMICA ACTA, 2024, 565