ASYMPTOTIC ANALYSIS OF FRICTIONAL CONTACT PROBLEM FOR PIEZOELECTRIC SHALLOW SHELL

被引:3
|
作者
Mezabia, M. E. [1 ]
Ghezal, A. [2 ]
Chacha, D. A. [2 ]
机构
[1] Univ Mohamed Khider, BP 145 RP, Biskra 07000, Algeria
[2] Univ Kasdi Merbah Ouargla, Lab Math Appl, BP 511, Ouargla 30000, Algeria
关键词
MATHEMATICAL JUSTIFICATION; OBSTACLE PROBLEM;
D O I
10.1093/qjmam/hbz014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this work is to study the asymptotic justification of a new two-dimensional model for the equilibrium state of a piezoelectric linear shallow shell in frictional contact with a rigid foundation. More precisely, we consider the Signorini problem with Tresca friction of a piezoelectric linear shallow shell in contact with a rigid foundation. Then, we establish the convergence of the mechanical displacement and the electric potential as the thickness of the shallow shell goes to zero.
引用
收藏
页码:473 / 499
页数:27
相关论文
共 50 条
  • [1] Asymptotic analysis for a dynamic piezoelectric shallow shell
    Guan, Yan
    Miara, Bernadette
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) : 5193 - 5211
  • [2] Analysis and numerical solution of a piezoelectric frictional contact problem
    Sofonea, Mircea
    Kazmi, Kamran
    Barboteu, Mikael
    Han, Weimin
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (09) : 4483 - 4501
  • [3] Asymptotic modeling of frictional Signorini problem of an anisotropic piezoelectric linear elastic membrane shell
    Mezabia, Mohammed El Hadi
    Chacha, Djamel Ahmed
    [J]. PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MATHEMATICS AND INFORMATION TECHNOLOGY (ICMIT), 2017, : 341 - 347
  • [4] A dynamic frictional contact problem for piezoelectric materials
    Migorski, Stanislaw
    Ochal, Anna
    Sofonea, Mircea
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) : 161 - 176
  • [5] THE CONTACT PROBLEM FOR A SHALLOW SHELL WITH A CRACK
    KHLUDNEV, AM
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1995, 59 (02): : 299 - 306
  • [6] A mixed variational formulation for a piezoelectric frictional contact problem
    Matei, Andaluzia
    Sofonea, Mircea
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (02) : 334 - 354
  • [7] Quasistatic frictional thermo-piezoelectric contact problem
    Benaissa, Hicham
    Benkhira, El-Hassan
    Fakhar, Rachid
    Hachlaf, Abdelhadi
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (04) : 1292 - 1311
  • [8] Mathematical justification of the obstacle problem for a piezoelectric shallow shell
    Yan, Guan
    Miara, Bernadette
    [J]. ASYMPTOTIC ANALYSIS, 2017, 102 (1-2) : 71 - 97
  • [9] Optimal control of a frictional thermo-piezoelectric contact problem
    R. Bouchantouf
    O. Baiz
    D. El Moutawakil
    H. Benaissa
    [J]. International Journal of Dynamics and Control, 2023, 11 : 821 - 834
  • [10] A Frictional Contact Problem Involving Piezoelectric Materials with Long Memory
    Selmani, Mohamed
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 1177 - 1197