SUFFICIENT CONDITIONS FOR CERTAIN STRUCTURAL PROPERTIES OF GRAPHS BASED ON WIENER-TYPE INDICES

被引:0
|
作者
Deng, Hanyuan [1 ]
Kuang, Meijun [1 ]
Wu, Renfang [1 ]
Huang, Guihua [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
关键词
Wiener-type invariant; degree sequence; cycle; path; Hamiltonian cycle; TOPOLOGICAL INDEXES; HARARY INDEX; DISTANCE; PATHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple connected graph with vertex set V and edge set E. The Wiener-type invariants of G = (V, E) can be expressed in terms of the quantities W-f = Sigma({u, v}subset of V) f (d(G) (u, v)), for various choices of the function f, where d(G)(u,v) is the distance between the vertices u and v in G. In this paper, we establish sufficient conditions based on Wiener-type indices under which every path of length r is contained in a Hamiltonian cycle and under which a bipartite graph on n + m, m > n, vertices contains a cycle of size 2n.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [1] The Wiener-type indices of the corona of two graphs
    Bian, Hong
    Ma, Xiaoling
    Vumar, Elkin
    Yu, Haizheng
    [J]. ARS COMBINATORIA, 2012, 107 : 193 - 199
  • [2] Wiener-type indices of Parikh word representable graphs
    Thomas, Nobin
    Mathew, Lisa
    Sriram, Sastha
    Subramanian, K. G.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2021, 20 (02) : 243 - 260
  • [3] Wiener-Type Invariants and Hamiltonian Properties of Graphs
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    [J]. FILOMAT, 2019, 33 (13) : 4045 - 4058
  • [4] Wiener-type topological indices
    Diudea, MV
    Gutman, I
    [J]. CROATICA CHEMICA ACTA, 1998, 71 (01) : 21 - 51
  • [5] Some sufficient conditions for hamiltonian property in terms of wiener-type invariants
    Kuang M.
    Huang G.
    Deng H.
    [J]. Proceedings - Mathematical Sciences, 2016, 126 (1) : 1 - 9
  • [6] Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants
    Kuang, Meijun
    Huang, Guihua
    Deng, Hanyuan
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (01): : 1 - 9
  • [7] Wiener-type topological indices of phenylenes
    Furtula, B
    Gutman, I
    Tomovic, Z
    Vesel, A
    Pesek, I
    [J]. INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2002, 41 (09): : 1767 - 1772
  • [8] On Wiener-type polynomials of thorn graphs
    Zhou, Bo
    Vukicevic, Damir
    [J]. JOURNAL OF CHEMOMETRICS, 2009, 23 (11-12) : 600 - 604
  • [9] Sharp Bounds and Normalization of Wiener-Type Indices
    Tian, Dechao
    Choi, Kwok Pui
    [J]. PLOS ONE, 2013, 8 (11):
  • [10] Wiener-type indices and internal molecular energy
    Gutman, I
    Vidovic, D
    Furtula, B
    Zenkevich, IG
    [J]. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2003, 68 (4-5) : 401 - 408