Laminar burning velocity of hydrogen-methane/air premixed flames

被引:346
|
作者
Di Sarli, V.
Di Benedetto, A. [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Ingn Chim, I-80125 Naples, Italy
[2] CNR, Ist Ricerche Combust, I-80124 Naples, Italy
关键词
hydrogen-methane blend; laminar burning velocity; Le Chatelier's Rule;
D O I
10.1016/j.ijhydene.2006.05.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The laminar burning velocities of hydrogen-methane/air mixtures at NTP conditions were calculated using the CHEMKIN PREMIX code with the GRI kinetic mechanism. The equivalence ratio and the fuel composition were varied from lean to rich and from pure methane to pure hydrogen, respectively. The results show that the values of the blends laminar burning velocities are always smaller than those obtained by averaging the laminar burning velocities of the pure fuels according to their molar proportions. Moreover, in lean mixtures the hydrogen addition enhances the methane reactivity slightly, while a strong inhibiting effect of the hydrogen substitution by methane is observed at rich conditions. These findings are attributed to changes of both, the H radicals concentration and the reactions involving such atoms. It was attempted to correlate the calculated laminar burning velocities by means of a Le Chatelier's Rule-like formula. A good prediction is obtained, except for rich mixtures With high hydrogen contents. With this limitation, the proposed formula is Successfully applied also to mixtures at higher than normal values of initial pressure (up to 10 atm) and temperature (up to 400 K). (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [1] Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
    Galmiche, B.
    Halter, F.
    Foucher, F.
    Dagaut, P.
    ENERGY & FUELS, 2011, 25 (03) : 948 - 954
  • [2] Numerical study on laminar burning velocity and NO formation of premixed methane-hydrogen-air flames
    Hu, Erjiang
    Huang, Zuohua
    Zheng, Jianjun
    Li, Qianqian
    He, Jiajia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) : 6545 - 6557
  • [3] Measurements of the laminar burning velocity of hydrogen-air premixed flames
    Pareja, Jhon
    Burbano, Hugo J.
    Ogami, Yasuhiro
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (04) : 1812 - 1818
  • [4] Measurements of the laminar burning velocity of hydrogen-air premixed flames
    Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108, 447 Medellín, Colombia
    不详
    Int J Hydrogen Energy, 4 (1812-1818):
  • [5] Investigation of the influence of DMMP on the laminar burning velocity of methane/air premixed flames
    Li, Wei
    Jiang, Yong
    Jin, Yi
    Zhu, Xianli
    FUEL, 2019, 235 : 1294 - 1300
  • [6] NUMERICAL INVESTIGATION ON LAMINAR BURNING VELOCITY OF HYDROGEN-METHANE/AIR MIXTURES: A REVIEW
    Zaidi, Nur Hazwani Fatihah M.
    Kasmani, Rafiziana M.
    Mustafa, Azeman
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 : 40 - 49
  • [7] Effects of flow transients on the burning velocity of laminar hydrogen/air premixed flames
    Im, HG
    Chen, JH
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 : 1833 - 1840
  • [8] Laminar burning velocity of hydrogen-air premixed flames at elevated pressure
    Qin, X
    Kobayashi, H
    Niioka, T
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2000, 21 (1-3) : 58 - 63
  • [9] The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames
    van den Boom, J. D. B. J.
    Konnov, A. A.
    Verhasselt, A. M. H. H.
    Kornilov, V. N.
    de Goey, L. P. H.
    Nijmeijer, H.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 1237 - 1244
  • [10] Data-driven prediction of laminar burning velocity for ternary ammonia/hydrogen/methane/air premixed flames
    Ustun, Cihat Emre
    Eckart, Sven
    Valera-Medina, Agustin
    Paykani, Amin
    FUEL, 2024, 368