Hierarchical Transfer Learning for Multi-label Text Classification

被引:0
|
作者
Banerjee, Siddhartha [1 ]
Akkaya, Cem [1 ]
Perez-Sorrosal, Francisco [1 ]
Tsioutsiouliklis, Kostas [1 ]
机构
[1] Yahoo Res, 701 First Ave, Sunnyvale, CA 94089 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-Label Hierarchical Text Classification (MLHTC) is the task of categorizing documents into one or more topics organized in an hierarchical taxonomy. MLHTC can be formulated by combining multiple binary classification problems with an independent classifier for each category. We propose a novel transfer learning based strategy, HTrans, where binary classifiers at lower levels in the hierarchy are initialized using parameters of the parent classifier and fine-tuned on the child category classification task. In HTrans, we use a Gated Recurrent Unit (GRU)-based deep learning architecture coupled with attention. Compared to binary classifiers trained from scratch, our HTrans approach results in significant improvements of 1% on micro-F1 and 3% on macro-F1 on the RCV1 dataset. Our experiments also show that binary classifiers trained from scratch are significantly better than single multi-label models.
引用
收藏
页码:6295 / 6300
页数:6
相关论文
共 50 条
  • [1] Hierarchical text classification with multi-label contrastive learning and KNN
    Zhang, Jun
    Li, Yubin
    Shen, Fanfan
    He, Yueshun
    Tan, Hai
    He, Yanxiang
    [J]. NEUROCOMPUTING, 2024, 577
  • [2] Cognitive structure learning model for hierarchical multi-label text classification
    Wang, Boyan
    Hu, Xuegang
    Li, Peipei
    Yu, Philip S.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [3] Hierarchical Multi-label Classification of Text with Capsule Networks
    Aly, Rami
    Remus, Steffen
    Biemann, Chris
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, 2019, : 323 - 330
  • [4] Hierarchical Multi-Label Classification of Social Text Streams
    Ren, Zhaochun
    Peetz, Maria-Hendrike
    Liang, Shangsong
    van Dolen, Willemijn
    de Rijke, Maarten
    [J]. SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 213 - 222
  • [5] Hierarchical multi-instance multi-label learning for Chinese patent text classification
    Liu, Yunduo
    Xu, Fang
    Zhao, Yushan
    Ma, Zichen
    Wang, Tengke
    Zhang, Shunxiang
    Tian, Yuhao
    [J]. CONNECTION SCIENCE, 2024, 36 (01)
  • [6] Active learning for hierarchical multi-label classification
    Nakano, Felipe Kenji
    Cerri, Ricardo
    Vens, Celine
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (05) : 1496 - 1530
  • [7] Active learning for hierarchical multi-label classification
    Felipe Kenji Nakano
    Ricardo Cerri
    Celine Vens
    [J]. Data Mining and Knowledge Discovery, 2020, 34 : 1496 - 1530
  • [8] An Interactive Fusion Model for Hierarchical Multi-label Text Classification
    Zhao, Xiuhao
    Li, Zhao
    Zhang, Xianming
    Wang, Jibin
    Chen, Tong
    Ju, Zhengyu
    Wang, Canjun
    Zhang, Chao
    Zhan, Yiming
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 168 - 178
  • [9] HMATC: Hierarchical multi-label Arabic text classification model using machine learning
    Aljedani, Nawal
    Alotaibi, Reem
    Taileb, Mounira
    [J]. EGYPTIAN INFORMATICS JOURNAL, 2021, 22 (03) : 225 - 237
  • [10] Contrastive Enhanced Learning for Multi-Label Text Classification
    Wu, Tianxiang
    Yang, Shuqun
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (19):