PANI-PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries

被引:62
|
作者
Gong, Chunli [1 ,2 ,3 ]
Deng, Fangli [1 ]
Tsui, Chi-Pong [3 ]
Xue, Zhigang [1 ]
Ye, Yun Sheng [1 ]
Tang, Chak-Yin [3 ]
Zhou, Xingping [1 ]
Xie, Xiaolin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Large Format Battery Mat & Syst, Minist Educ, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[2] Hubei Engn Univ, Coll Chem & Mat Sci, Xiaogan 432100, Hubei, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
LIFEPO4/POLYANILINE COMPOSITE CATHODE; TRIBLOCK COPOLYMER; POLYMER ELECTROLYTES; PHOSPHO-OLIVINES; ANILINE PENTAMER; IRON PHOSPHATES; REDOX-COUPLE; POLYANILINE; ANODE; CYCLABILITY;
D O I
10.1039/c4ta04089a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The poor electronic conductivity and low lithium ion diffusion rate of a LiFePO4 cathode material are the two major obstacles for its commercial applications in the power lithium ion batteries. This article utilized an electroactive and ion conductive copolymer, polyaniline-poly(ethylene glycol) (PANI-PEG), to modify carbon-LiFePO4 (cLFP) by a facile in situ chemical copolymerization method. The structure and morphology of the cLFP/PANI-PEG composite were confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compared with a cLFP/PANI composite, the cLFP/PANI-PEG composite exhibited a more uniform and full polymer coating layer. Furthermore, this cLFP/PANI-PEG cathode material exhibits excellent cyclic stability (95.7% capacity retention after 100 cycles at 0.1 C) and high rate capability (125.3 mA h g(-1) at 5 C) as the PANI-PEG copolymer coating layer facilitated electron and ion transport within the electrode. Electrochemical impedance spectroscopy (EIS) proved that the lithium ion diffusion in the cLFP/PANI-PEG composite was increased significantly by one order of magnitude compared with cLFP, indicating its possibility to be served as a cathode material for high-performance lithium ion batteries.
引用
下载
收藏
页码:19315 / 19323
页数:9
相关论文
共 50 条
  • [1] A carbon–LiFePO4 nanocomposite as high-performance cathode material for lithium-ion batteries
    Jianguo Ren
    Weihua Pu
    Xiangming He
    Changyin Jiang
    Chunrong Wan
    Ionics, 2011, 17 : 581 - 586
  • [2] Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries
    Bi, Hui
    Huang, Fuqiang
    Tang, Yufeng
    Liu, Zhanqiang
    Lin, Tianquan
    Chen, Jian
    Zhao, Wei
    ELECTROCHIMICA ACTA, 2013, 88 : 414 - 420
  • [3] TaC-modified LiFePO4/C composite as cathode material for high-performance lithium-ion batteries
    Liu, Yang
    Qi, Cai
    Cai, Dandan
    Tang, Xiao
    Li, Ying
    Li, Wenxian
    Shao, Qinsi
    Zhang, Jiujun
    IONICS, 2023, 29 (06) : 2191 - 2198
  • [4] TaC-modified LiFePO4/C composite as cathode material for high-performance lithium-ion batteries
    Yang Liu
    Cai Qi
    Dandan Cai
    Xiao Tang
    Ying Li
    Wenxian Li
    Qinsi Shao
    Jiujun Zhang
    Ionics, 2023, 29 : 2191 - 2198
  • [5] Enhanced electrochemical performance of graphene modified LiFePO4 cathode material for lithium ion batteries
    Dhindsa, K. S.
    Mandal, B. P.
    Bazzi, K.
    Lin, M. W.
    Nazri, M.
    Nazri, G. A.
    Naik, V. M.
    Garg, V. K.
    Oliveira, A. C.
    Vaishnava, P.
    Naik, R.
    Zhou, Z. X.
    SOLID STATE IONICS, 2013, 253 : 94 - 100
  • [6] LiFePO4/sulfur composite as a high-performance cathode material for hybrid lithium batteries
    Zhu, Lei
    Jiang, Xiaobiao
    Jia, Di
    Wu, Yongmin
    Tang, Weiping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [7] Carbon Nanocages Supported LiFePO4 Nanoparticles as High-Performance Cathode for Lithium Ion Batteries
    Feng Rui
    Wang Liwei
    Lyu Zhiyang
    Wu Qiang
    Yang Lijun
    Wang Xizhang
    Hu Zheng
    ACTA CHIMICA SINICA, 2014, 72 (06) : 653 - 657
  • [8] Solvothermal synthesis of LiFePO4 nanorods as high-performance cathode materials for lithium ion batteries
    Wang, Yajing
    Zhu, Bo
    Wang, Yanming
    Wang, Fei
    CERAMICS INTERNATIONAL, 2016, 42 (08) : 10297 - 10303
  • [9] Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries
    Lin, Yingbin
    Lin, Ying
    Zhou, Ting
    Zhao, Guiying
    Huang, Yandan
    Yang, Yanmin
    Huang, Zhigao
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 138 (01) : 313 - 318
  • [10] Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries
    Ren, Yu
    Bruce, Peter G.
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 17 : 60 - 62