The compositum of wild extensions of local fields of prime degree

被引:7
|
作者
Del Corso, Ilaria [1 ]
Dvornicich, Roberto [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 150卷 / 04期
关键词
local fields; Galois theory; ramification;
D O I
10.1007/s00605-006-0417-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a general view of the totally and wildly ramified extensions of degree p of a p- adic field K. Our method consists in deducing the properties of the set of all extensions of degree p of K from the study of the compositum C-K(p) of all its elements. We show that in fact CK(p) is the maximal abelian extension of exponent p of F = F(K), where F is the compositum of all cyclic extensions of K of degree dividing p - 1. By our method, it is fairly simple to recover the distribution of the extensions of K of degree p ( and also of their isomorphism classes) according to their discriminant.
引用
下载
收藏
页码:271 / 288
页数:18
相关论文
共 50 条
  • [1] The Compositum of Wild Extensions of Local Fields of Prime Degree
    Ilaria Del Corso
    Roberto Dvornicich
    Monatshefte für Mathematik, 2007, 150 : 271 - 288
  • [2] Compositum of two number fields of prime degree
    Virbalas, Paulius
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 171 - 192
  • [3] On the compositum of orthogonal cyclic fields of the same odd prime degree
    Greither, Cornelius
    Kucera, Radan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (06): : 1506 - 1530
  • [4] Wild ramification in number field extensions of prime degree
    D. Doud
    Archiv der Mathematik, 2003, 81 : 646 - 649
  • [5] Wild ramification in number field extensions of prime degree
    Doud, D
    ARCHIV DER MATHEMATIK, 2003, 81 (06) : 646 - 649
  • [6] COMPOSITUM OF GALOIS EXTENSIONS OF HILBERTIAN FIELDS
    HARAN, D
    JARDEN, M
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1991, 24 (06): : 739 - 748
  • [7] On the degree of compositum of two number fields
    Drungilas, Paulius
    Dubickas, Arturas
    Luca, Florian
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (2-3) : 171 - 180
  • [8] Valued fields with finitely many defect extensions of prime degree
    Kuhlmann, Franz-Viktor
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (03)
  • [9] On the compositum of all degree d extensions of a number field
    Gal, Itamar
    Grizzard, Robert
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (03): : 655 - 672
  • [10] A degree problem for the compositum of two number fields*
    Drungilas, Paulius
    Maciulevicius, Lukas
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (01) : 39 - 47