SIMULTANEOUS CONFIDENCE BANDS IN NONLINEAR REGRESSION MODELS WITH NONSTATIONARITY

被引:2
|
作者
Li, Degui [1 ]
Liu, Weidong [2 ,3 ]
Wang, Qiying [4 ]
Wu, Wei Biao [5 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai, Peoples R China
[4] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[5] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Gumbel convergence; integrated process; local linear estimation; local time limit theory; maximum deviation; simultaneous confidence bands; NONPARAMETRIC COINTEGRATING REGRESSION; VARYING-COEFFICIENT MODELS; TIME-SERIES DATA; UNIFORM-CONVERGENCE; DENSITY-ESTIMATION; ASYMPTOTIC THEORY; SPECIFICATION; DEVIATIONS; INFERENCE;
D O I
10.5705/ss.202015.0219
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nonparametric estimation of the regression function g(.) in a nonlinear regression model Y-t = g(X-t)+ sigma(X-t)e(t), where the regressor (X-t) is a nonstationary unit root process and the error (et) is a sequence of independent and identically distributed (i.i.d.) random variables. With proper centering and scaling, the maximum deviation of the local linear estimator of the regression function g is shown to be asymptotically Gumbel. Based on the latter result, we construct simultaneous confidence bands for g, which can be used to test patterns of the regression function. Our results extend existing ones that typically require independent or stationary weakly dependent regressors. We examine the finite sample behavior of the proposed approach via simulated and empirical data examples.
引用
收藏
页码:1385 / 1400
页数:16
相关论文
共 50 条