Adaptive Forecasting of High-Energy Electron Flux at Geostationary Orbit Using ADALINE Neural Network

被引:0
|
作者
Tokumitsu, Masahiro [1 ]
Ishida, Yoshiteru [1 ]
Watari, Shinichi [2 ]
Kitamura, Kentarou [3 ]
机构
[1] Toyohashi Univ Technol, Elect & Informat Engn Dept, Tempaku Ku, 1-1 Hibarigaoka, Toyohashi, Aichi 4418750, Japan
[2] Natl Inst Informat & Commun Technol, Appl Electromagnet Res Ctr, Koganei, Tokyo 1848795, Japan
[3] Tokuyama Coll Technol, Dept Mech & Elect Engn, Gakuendai, Yamaguchi 7458585, Japan
关键词
Adaptive Learning; Neural Network; High-energy Electron; Dielectric Charging of Spacecraft; Space Weather; RELATIVISTIC ELECTRONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-energy electron flux increases in the recovery phase after the space weather events Such as a coronal mass ejection. High-energy electrons can penetrate circuits deeply and the penetration could lead to deep dielectric charging. The forecast of high-energy electron flux is vital in providing warning information for spacecraft operations. We investigate an adaptive predictor based on ADALINE neural network. The predictor can forecast the trend of the daily variations in high-energy electrons. The predictor was trained with the dataset of ten years from 1998 to 2008. We obtained the prediction efficiency approximately 0.6 each year except the first learning year 1998. Furthermore, the predictor can adapt to the changes for the satellite's location. Our model Succeeded in forecasting the high-energy electron flux 24 hours ahead.
引用
收藏
页码:797 / +
页数:2
相关论文
共 50 条
  • [1] Quantitative Prediction of High-Energy Electron Integral Flux at Geostationary Orbit Based on Deep Learning
    Wei, Lihang
    Zhong, Qiuzhen
    Lin, Ruilin
    Wang, Jingjing
    Liu, Siqing
    Cao, Yong
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (07): : 903 - 916
  • [2] HIGH-ENERGY ELECTRON-DRIFT ECHOES AT GEOSTATIONARY ORBIT
    CHANTEUR, G
    GENDRIN, R
    PERRAUT, S
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1978, 40 (03): : 367 - 371
  • [3] Study on a forecasting method of the relativistic electron flux at geostationary orbit using geomagnetic pulsation data
    He Tian
    Liu Si-Qing
    Xue Bing-Sen
    Cheng Yong-Hong
    Gong Jian-Cun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2009, 52 (10): : 2419 - 2427
  • [4] Research Progress in High-Energy Electron Flux Prediction Methods in Geosynchronous Orbit
    Han, Ke
    Chu, Ying
    Wan, Jie
    Jin, Cheng-gang
    Zheng, De-quan
    E, Peng
    SOLAR SYSTEM RESEARCH, 2024, 58 (05) : 612 - 628
  • [5] Prediction of Electron Flux Environment at Geosynchronous Orbit using Neural Network Technique
    Kitamura, K.
    Nakamura, Y.
    Tokumitsu, M.
    Ishida, Y.
    Watari, S.
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 487 - 490
  • [6] Prediction of the electron flux environment in geosynchronous orbit using a neural network technique
    Kitamura, K.
    Nakamura, Y.
    Tokumitsu, M.
    Ishida, Y.
    Watari, S.
    ARTIFICIAL LIFE AND ROBOTICS, 2011, 16 (03) : 389 - 392
  • [7] HIGH-ENERGY PARTICLE DYNAMICS AT GEOSTATIONARY ORBIT FOLLOWING A GLOBAL MAGNETOSPHERIC DEFORMATION
    CHANTEUR, G
    GENDRIN, R
    PERRAUT, S
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1976, 57 (09): : 664 - 664
  • [8] Statistical relationships between satellite anomalies at geostationary orbit and high-energy particles
    Pilipenko, V.
    Yagova, N.
    Romanova, N.
    Allen, J.
    SPACE WEATHER PREDICTION: APPLICATIONS AND VALIDATION, 2006, 37 (06): : 1192 - 1205
  • [9] A NEURAL NETWORK MODEL OF THE RELATIVISTIC ELECTRON FLUX AT GEOSYNCHRONOUS ORBIT
    KOONS, HC
    GORNEY, DJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A4) : 5549 - 5556
  • [10] Prediction of relativistic electron flux in the Earth's outer radiation belt at geostationary orbit by adaptive methods
    Myagkova, I. N.
    Dolenko, S. A.
    Efitorov, A. O.
    Shirokii, V. R.
    Sentemova, N. S.
    GEOMAGNETISM AND AERONOMY, 2017, 57 (01) : 8 - 15