Detection of Motor Impairment in Parkinson's Disease Via Mobile Touchscreen Typing

被引:68
|
作者
Arroyo-Gallego, Teresa [1 ,2 ,3 ]
Jesus Ledesma-Carbayo, Maria [2 ,3 ]
Sanchez-Ferro, Alvaro [4 ,5 ]
Butterworth, Ian [4 ]
Mendoza, Carlos S. [4 ,6 ]
Matarazzo, Michele [5 ,7 ]
Montero, Paloma [8 ]
Lopez-Blanco, Roberto [7 ]
Puertas-Martin, Veronica [7 ]
Trincado, Rocio [7 ]
Giancardo, Luca [4 ,9 ]
机构
[1] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Politecn Madrid, Biomed Image Technol, Madrid, Spain
[3] CIBER BBN, Madrid, Spain
[4] MIT, Elect Res Lab, Madrid MIT M Vis Consortium, Cambridge, MA 02139 USA
[5] HM Hosp Ctr Integral Neurociencias HM CINAC, Madrid, Spain
[6] Asana Weartech, Madrid, Spain
[7] Inst Invest Hosp 12 Octubre I 12, Madrid, Spain
[8] Hosp Clin San Carlos, Movement Disorders Unit, Madrid, Spain
[9] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Ctr Precis Hlth, Houston, TX 77030 USA
关键词
Feature extraction; finger tapping; keystroke dynamics; mHealth; passive monitoring; signal processing; smartphone; DISABILITY;
D O I
10.1109/TBME.2017.2664802
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Mobile technology is opening a wide range of opportunities for transforming the standard of care for chronic disorders. Using smartphones as tools for longitudinally tracking symptoms could enable personalization of drug regimens and improve patient monitoring. Parkinson's disease (PD) is an ideal candidate for these tools. At present, evaluation of PD signs requires trained experts to quantify motor impairment in the clinic, limiting the frequency and quality of the information available for understanding the status and progression of the disease. Mobile technology can help clinical decision making by completing the information of motor status between hospital visits. This paper presents an algorithm to detect PD by analyzing the typing activity on smartphones independently of the content of the typed text. We propose a set of touchscreen typing features based on a covariance, skewness, and kurtosis analysis of the timing information of the data to capture PD motor signs. We tested these features, both independently and in a multivariate framework, in a population of 21 PD and 23 control subjects, achieving a sensitivity/specificity of 0.81/0.81 for the best performing feature and 0.73/0.84 for the best multivariate method. The results of the alternating finger-tapping, an established motor test, measured in our cohort are 0.75/0.78. This paper contributes to the development of a home-based, high-compliance, and highfrequency PD motor test by analysis of routine typing on touchscreens.
引用
收藏
页码:1994 / 2002
页数:9
相关论文
共 50 条
  • [1] Early Parkinson's Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks
    Iakovakis, Dimitrios
    Hadjidimitriou, Stelios
    Charisis, Vasileios
    Bostanjopoulou, Sevasti
    Katsarou, Zoe
    Klingelhoefer, Lisa
    Mayer, Simone
    Reichmann, Heinz
    Dias, Sofia B.
    Diniz, Jose A.
    Trivedi, Dhaval
    Chaudhuri, Ray K.
    Hadjileontiadis, Leontios J.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 3535 - 3538
  • [2] Exploring Asymmetric Fine Motor Impairment Trends in Early Parkinson's Disease via Keystroke Typing
    Holmes, Ashley A.
    Matarazzo, Michele
    Mondesire-Crump, Ijah
    Katz, Emily
    Mahajan, Rahul
    Arroyo-Gallego, Teresa
    MOVEMENT DISORDERS CLINICAL PRACTICE, 2023, 10 (10): : 1530 - 1535
  • [3] Unbiased and Mobile Gait Analysis Detects Motor Impairment in Parkinson's Disease
    Klucken, Jochen
    Barth, Jens
    Kugler, Patrick
    Schlachetzki, Johannes
    Henze, Thore
    Marxreiter, Franz
    Kohl, Zacharias
    Steidl, Ralph
    Hornegger, Joachim
    Eskofier, Bjoern
    Winkler, Juergen
    PLOS ONE, 2013, 8 (02):
  • [4] Screening of Parkinsonian subtle fine-motor impairment from touchscreen typing via deep learning
    Dimitrios Iakovakis
    K. Ray Chaudhuri
    Lisa Klingelhoefer
    Sevasti Bostantjopoulou
    Zoe Katsarou
    Dhaval Trivedi
    Heinz Reichmann
    Stelios Hadjidimitriou
    Vasileios Charisis
    Leontios J. Hadjileontiadis
    Scientific Reports, 10
  • [5] Screening of Parkinsonian subtle fine-motor impairment from touchscreen typing via deep learning
    Iakovakis, Dimitrios
    Chaudhuri, K. Ray
    Klingelhoefer, Lisa
    Bostantjopoulou, Sevasti
    Katsarou, Zoe
    Trivedi, Dhaval
    Reichmann, Heinz
    Hadjidimitriou, Stelios
    Charisis, Vasileios
    Hadjileontiadis, Leontios J.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease
    Iakovakis, Dimitrios
    Hadjidimitriou, Stelios
    Charisis, Vasileios
    Bostantzopoulou, Sevasti
    Katsarou, Zoe
    Hadjileontiadis, Leontios J.
    SCIENTIFIC REPORTS, 2018, 8
  • [7] Biosensor based mobile gait analysis detects motor impairment in Parkinson's disease
    Klucken, J.
    Barth, J.
    Kugler, P.
    Steidl, R.
    Hornegger, J.
    Eskofier, B.
    Winkler, J.
    MOVEMENT DISORDERS, 2012, 27 : S99 - S100
  • [8] Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease
    Dimitrios Iakovakis
    Stelios Hadjidimitriou
    Vasileios Charisis
    Sevasti Bostantzopoulou
    Zoe Katsarou
    Leontios J. Hadjileontiadis
    Scientific Reports, 8
  • [9] Self-Supervised Learning with Touchscreen Typing. A Generalizable Strategy for Parkinson's Disease Detection Across Datasets
    Tripathi, Shikha
    Acien, Alejandro
    Holmes, Ashley A.
    Arroyo-Gallego, Teresa
    Giancardo, Luca
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [10] Motor-cognitive interference during touchscreen manipulations in Parkinson's disease
    De Vleeschhauwer, J.
    Broeder, S.
    Ginis, P.
    Janssens, L.
    Nieuwboer, A.
    Nackaerts, E.
    MOVEMENT DISORDERS, 2021, 36 : S484 - S485