REGULARITY OF VELOCITY AVERAGES FOR TRANSPORT EQUATIONS ON RANDOM DISCRETE VELOCITY GRIDS

被引:2
|
作者
Ayi, Nathalie [1 ]
Goudon, Thierry [2 ]
机构
[1] Inria Rennes Bretagne Atlantique, IPSO, Res Team, IRMAR,UMR CNRS 6625, Campus Beaulieu,Batiment 22-23, F-35042 Rennes, France
[2] Univ Cote dAzur, INRIA, CNRS, LJAD, Parc Valrose, F-06108 Nice, France
来源
ANALYSIS & PDE | 2017年 / 10卷 / 05期
关键词
average lemma; discrete velocity models; random velocity grids; hydrodynamic limits; MONTE-CARLO METHOD; BOLTZMANN-EQUATION; DIFFUSION LIMIT; CONVERGENCE; SCHEMES; APPROXIMATION; EXISTENCE;
D O I
10.2140/apde.2017.10.1201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We go back to the question of the regularity of the "velocity average" integral f (x, upsilon)psi(upsilon)d mu(upsilon) when f and upsilon.del(x) f both belong to L-2, and the variable upsilon lies in a discrete subset of R-D. First of all, we provide a rate, depending on the number of velocities, for the defect of H-1/2 regularity which is reached when v ranges over a continuous set. Second of all, we show that the H-1/2 regularity holds in expectation when the set of velocities is chosen randomly. We apply this statement to investigate the consistency with the diffusion asymptotics of a Monte Carlo-like discrete velocity model.
引用
收藏
页码:1201 / 1225
页数:25
相关论文
共 50 条
  • [2] LP REGULARITY OF VELOCITY AVERAGES
    DIPERNA, RJ
    LIONS, PL
    MEYER, Y
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4): : 271 - 287
  • [3] OPTIMAL REGULARITY OF VELOCITY AVERAGES
    LIONS, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (08): : 911 - 915
  • [4] Optimal regularity of velocity averages, II
    Lions, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (08): : 945 - 948
  • [5] Discrete Painleve equations and random matrix averages
    Forrester, PJ
    Witte, NS
    NONLINEARITY, 2003, 16 (06) : 1919 - 1944
  • [6] Exact averaging of stochastic equations for transport in random velocity field
    Shvidler, M
    Karasaki, K
    TRANSPORT IN POROUS MEDIA, 2003, 50 (03) : 223 - 241
  • [7] Exact Averaging of Stochastic Equations for Transport in Random Velocity Field
    Mark Shvidler
    Kenzi Karasaki
    Transport in Porous Media, 2003, 50 : 223 - 241
  • [8] AVERAGES OVER SPHERES FOR KINETIC TRANSPORT EQUATIONS WITH VELOCITY DERIVATIVES IN THE RIGHT-HAND SIDE
    Bournaveas, Nikolaos
    Gutierrez, Susana
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 653 - 674
  • [9] Compactness of velocity averages
    Portilheiro, M
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (02) : 357 - 379
  • [10] Energy transport velocity in random media
    Busch, K
    Soukoulis, CM
    PHOTONIC BAND GAP MATERIALS, 1996, 315 : 667 - 678