A simple test of completeness in a class of nonparametric specification

被引:0
|
作者
Hu, Yingyao [1 ]
Shiu, Ji-Liang [2 ]
机构
[1] Johns Hopkins Univ, Dept Econ, 3400 N Charles St, Baltimore, MD 21218 USA
[2] Jinan Univ, Inst Econ & Social Res, Guangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Completeness test; nonclassical measurement error models; nonparametric IV regression models; C12; C14; C26; EMPIRICAL CHARACTERISTIC FUNCTION; INSTRUMENTAL VARIABLE ESTIMATION; MEASUREMENT ERROR; REGRESSION-MODEL; IDENTIFICATION; MAXIMUM; TRANSFORMATION; SHAPE;
D O I
10.1080/07474938.2021.1957285
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper provides a test for completeness in a class of nonparametric specification with an additive and independent error term. It is known that such a nonparametric location family of functions is complete if and only if the characteristic function of the error term has no zeros on the real line. Because a zero of the error characteristic function implies that of an observed marginal distribution, we propose a simple test for zeros of characteristic function of the observed distribution, in which rejection of the null hypothesis implies the completeness. This test is applicable to many popular settings, such as nonparametric regression models with instrumental variables, and nonclassical measurement error models. We describe the asymptotic behavior of the tests under the null and alternative hypotheses and investigate the finite sample properties of the proposed test through a Monte Carlo study. We illustrate our method empirically by estimating a measurement error model using the CPS/SSR 1978 exact match file.
引用
收藏
页码:373 / 399
页数:27
相关论文
共 50 条
  • [1] A simple framework for nonparametric specification testing
    Ellison, G
    Ellison, SF
    JOURNAL OF ECONOMETRICS, 2000, 96 (01) : 1 - 23
  • [2] SIMPLE NONPARAMETRIC TEST FOR CORRELATION
    COCHRAN, DJ
    GIBSON, JD
    HUMAN FACTORS, 1977, 19 (03) : 273 - 278
  • [3] A SIMPLE NONPARAMETRIC TEST OF INDEPENDENCE
    BLOMQVIST, N
    ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (04): : 616 - 617
  • [4] A SIMPLE CONSISTENT SPECIFICATION TEST
    DONALD, SG
    ECONOMICS LETTERS, 1993, 41 (03) : 231 - 234
  • [5] A model specification test for the variance function in nonparametric regression
    Carlos Pardo-Fernandez, Juan
    Dolores Jimenez-Gamero, M.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 387 - 410
  • [6] USING A BIMODAL KERNEL FOR A NONPARAMETRIC REGRESSION SPECIFICATION TEST
    Park, Cheolyong
    Kim, Tae Yoon
    Ha, Jeongcheol
    Luo, Zhi-Ming
    Hwang, Sun Young
    STATISTICA SINICA, 2015, 25 (03) : 1145 - 1161
  • [7] A nonparametric specification test for the volatility functions of diffusion processes
    Chen, Qiang
    Hu, Meidi
    Song, Xiaojun
    ECONOMETRIC REVIEWS, 2019, 38 (05) : 557 - 576
  • [8] A model specification test for the variance function in nonparametric regression
    Juan Carlos Pardo-Fernández
    M. Dolores Jiménez-Gamero
    AStA Advances in Statistical Analysis, 2019, 103 : 387 - 410
  • [9] A SIMPLE NONPARAMETRIC PROCEDURE - THE MAXIMIN TEST
    MATOS, L
    HEPPES, A
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACOLOGY AND THERAPEUTICS, 1981, 19 (01) : 34 - 35
  • [10] A SIMPLE NONPARAMETRIC TEST OF PREDICTIVE PERFORMANCE
    PESARAN, MH
    TIMMERMANN, A
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1992, 10 (04) : 461 - 465