Comparison of Propagation Losses in THz and Optical Non-Line-of-Sight Imaging

被引:0
|
作者
Cui, Yiran [1 ]
Trichopoulos, Georgios C. [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
NLoS imaging; THz; rough surface scattering;
D O I
10.1109/apusncursinrsm.2019.8888705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the propagation losses in terahertz (THz) non-line-of-sight (NLoS) imaging and compare the performance to the optical counterpart. NLoS imaging exploits the multiple reflections of electromagnetic waves from surrounding surfaces to reconstruct the geometry and location of hidden objects. THz and visible/infrared radiations are attractive for NLoS imaging due to the short wavelengths and practical apertures that can support this non-conventional imaging. However, the scattering mechanisms vary significantly and determine the quality of the reconstructed images. This work compares for the first time the free-space path loss and rough surface scattering losses of a simple THz and optical NLoS imaging topology. Because specular reflections are dominant in THz scattering while optical systems suffer from strong diffuse scattering, THz NLoS imaging systems can receive considerably stronger backscattered signals.
引用
收藏
页码:1473 / 1474
页数:2
相关论文
共 50 条
  • [1] Non-line-of-sight imaging
    Daniele Faccio
    Andreas Velten
    Gordon Wetzstein
    Nature Reviews Physics, 2020, 2 : 318 - 327
  • [2] Non-line-of-sight imaging
    Faccio, Daniele
    Velten, Andreas
    Wetzstein, Gordon
    NATURE REVIEWS PHYSICS, 2020, 2 (06) : 318 - 327
  • [3] Acoustic Non-Line-of-Sight Imaging
    Lindell, David B.
    Wetzstein, Gordon
    Koltun, Vladlen
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3773 - 6782
  • [4] Confocal Non-line-of-sight Imaging
    O'Toole, Matthew
    Lindell, David B.
    Wetzstein, Gordon
    SIGGRAPH'18: ACM SIGGRAPH 2018 TALKS, 2018,
  • [5] Atmospheric propagation model in non-line-of-sight optical scattering communication
    Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
    Zhongguo Jiguang, 2006, 11 (1522-1526):
  • [6] Thermal Non-Line-of-Sight Imaging
    Maeda, Tomohiro
    Wang, Yiqin
    Raskar, Ramesh
    Kadambi, Achuta
    2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2019,
  • [7] Polarized Non-Line-of-Sight Imaging
    Tanaka, Kenichiro
    Mukaigawa, Yasuhiro
    Kadambi, Achuta
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2133 - 2142
  • [8] Non-line-of-sight multiscatter propagation model
    Yin, Hongwei
    Chang, Shengli
    Jia, Honghui
    Yang, Jiankun
    Yang, Juncai
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (11) : 2466 - 2469
  • [9] Non-line-of-sight imaging with absorption backprojection
    Zhou, Hongyuan
    Zhang, Dejian
    Wang, Tongbiao
    Liao, Qinghua
    Yu, Tianbao
    APPLIED PHYSICS LETTERS, 2023, 123 (05)
  • [10] NLOST: Non-Line-of-Sight Imaging with Transformer
    Li, Yue
    Peng, Jiayong
    Ye, Juntian
    Zhang, Yueyi
    Xu, Feihu
    Xiong, Zhiwei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13313 - 13322