On generalizations of positive subdefinite matrices and the linear complementarity problem

被引:0
|
作者
Dubey, Dipti [1 ]
Neogy, S. K. [1 ]
机构
[1] Indian Stat Inst, New Delhi, India
来源
LINEAR & MULTILINEAR ALGEBRA | 2018年 / 66卷 / 10期
关键词
Linear complementarity problem; generalized positive subdefinite matrices; generalizedpositive subdefinite matrices of level k; row sufficient matrices; copositive matrices; Lemke's algorithm; SUFFICIENT MATRICES; MONOTONICITY; CONVERGENCE;
D O I
10.1080/03081087.2017.1383348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of generalized positive subdefinite matrices of level k by generalizing the definition of generalized positive subdefinite matrices introduced by Crouzeix and Komlosi in [ Applied optimization. Vol. 59, Dordrecht: Kluwer Academic Publications; 2001. p. 45-63]. The main motivation behind this generalization is to identify new subclasses of row sufficient matrices [ Cottle, Pang and Venkateswaran, Linear Algebra Appl. 1989; 114/ 115: 231-249] which are not a subclass of copositive matrices. We establish new sufficient conditions for a matrix to be a non-copositive P0 matrix and a non-copositive row sufficient matrix using the notion of generalized positive subdefinite matrices of level k. We present a new termination result for Lemke's algorithm which supplements Jones' result [ Math Program. 1986; 35: 239-242].
引用
收藏
页码:2024 / 2035
页数:12
相关论文
共 50 条