On fractional power moments of zeta-functions associated with certain cusp forms

被引:5
|
作者
Laurincikas, A.
Steuding, J.
机构
[1] Vilnius State Univ, LT-2600 Vilnius, Lithuania
[2] Siauliai Univ, Dept Math & Informat, Shiauliai, Lithuania
[3] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
关键词
cusp form; moment; Riemann hypothesis; zeta-function of cusp form;
D O I
10.1007/s10440-007-9138-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove upper and lower bounds for fractional moments of zeta-functions attached to certain cusp forms on the critical line; the upper bound being conditional subject to the truth of the Riemann hypothesis.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 50 条
  • [1] On Fractional Power Moments of Zeta-Functions Associated with Certain Cusp Forms
    A. Laurinčikas
    J. Steuding
    Acta Applicandae Mathematicae, 2007, 97 : 25 - 39
  • [2] ON THE UNIVERSALITY OF ZETA-FUNCTIONS OF CERTAIN CUSP FORMS
    Laurincikas, Antanas
    Macaitiene, Renata
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2012, : 173 - +
  • [3] On zeta-functions associated to certain cusp forms. II
    Laurincikas, Antanas
    Steuding, Joern
    Siauciunas, Darius
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (04): : 635 - 649
  • [4] On zeta-functions associated to certain cusp forms.I
    Laurincikas, A.
    Steuding, J.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (01): : 1 - 18
  • [5] On the derivatives of zeta-functions of certain cusp forms
    Laurincikas, A
    GLASGOW MATHEMATICAL JOURNAL, 2005, 47 : 87 - 96
  • [7] On the derivatives of zeta-functions of certain cusp forms, II
    Laurincikas, A.
    GLASGOW MATHEMATICAL JOURNAL, 2005, 47 : 505 - 516
  • [8] Value distribution of zeta-functions of certain cusp forms
    Ivanauskaite, R.
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2007, : 30 - 37
  • [9] The universality of zeta-functions attached to certain cusp forms
    Laurincikas, A
    Matsumoto, K
    ACTA ARITHMETICA, 2001, 98 (04) : 345 - 359
  • [10] On the Functional Independence of Zeta-Functions of Certain Cusp Forms
    A. Laurinčikas
    Mathematical Notes, 2020, 107 : 609 - 617