Necessary conditions for L1-convergence of double Fourier series

被引:1
|
作者
Ferenc Moricz [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
Double Fourier series; L-1-convergence; Hardy's inequality for functions in the Hardy space H-1; Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials in L-1-norm; Conjugate trigonometric polynomials;
D O I
10.1016/j.jmaa.2009.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the results of A.S. Belov from single to double Fourier series, which give necessary conditions in terms of the Fourier coefficients for L-1-convergence. Our basic tools are Hardy's inequality for the Taylor coefficients of a function in the Hardy space H-1 on the unit disk. and the Bernstein-Zygmund inequalities for the derivative of a trigonometric polynomial in L-1-norm. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:559 / 568
页数:10
相关论文
共 50 条