A Bayesian method for biological pathway discovery from high-throughput experimental data

被引:0
|
作者
Wang, W [1 ]
Cooper, GF [1 ]
机构
[1] Univ Pittsburgh, Ctr Biomed Informat, Pittsburgh, PA 15260 USA
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This poster describes a novel Bayesian method for discovering intra-cellular pathways from high throughput data. This Bayesian method is generalized from a deterministic algorithm [1], and it combines experimental data with prior belief to produce as output a probability distribution over the possible causal relationships between each pair of variables. We applied this algorithm to gene expression data [2] on galactose metabolism in yeast. The Area Under ROC curve (AUROC) for the Wagner algorithm is 0.64. For the Bayesian algorithm the: AUROC is 0.87, with a 95% confidence interval of (0.77 0.94). Thus, the Bayesian algorithm performs statistically significantly better than Wagner algorithm.
引用
收藏
页码:645 / 646
页数:2
相关论文
共 50 条
  • [1] Pathway analysis of high-throughput biological data within a Bayesian network framework
    Isci, Senol
    Ozturk, Cengizhan
    Jones, Jon
    Otu, Hasan H.
    [J]. BIOINFORMATICS, 2011, 27 (12) : 1667 - 1674
  • [2] BAYESIAN MULTISTUDY FACTOR ANALYSIS FOR HIGH-THROUGHPUT BIOLOGICAL DATA
    De Vito, Roberta
    Bellio, Ruggero
    Trippa, Lorenzo
    Parmigiani, Giovanni
    [J]. ANNALS OF APPLIED STATISTICS, 2021, 15 (04): : 1723 - 1741
  • [3] Generalized empirical Bayesian methods for discovery of differential data in high-throughput biology
    Hardcastle, Thomas J.
    [J]. BIOINFORMATICS, 2016, 32 (02) : 195 - 202
  • [4] A Bayesian Approach to High-Throughput Biological Model Generation
    Shi, Xinghua
    Stevens, Rick
    [J]. BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2009, 5462 : 376 - 387
  • [5] Introduction: Knowledge discovery in high-throughput biological domains
    Jurisica, I
    Glasgow, J
    [J]. INFORMATION SYSTEMS FRONTIERS, 2006, 8 (01) : 5 - 7
  • [6] Introduction: Knowledge Discovery in High-Throughput Biological Domains
    [J]. Information Systems Frontiers, 2006, 8 : 5 - 7
  • [7] KEGGanim:: pathway animations for high-throughput data
    Adler, Priit
    Reimand, Jueri
    Jaenes, Juergen
    Kolde, Raivo
    Peterson, Hedi
    Vilo, Jaak
    [J]. BIOINFORMATICS, 2008, 24 (04) : 588 - 590
  • [8] Quantitative analysis of high-throughput biological data
    Juan, Hsueh-Fen
    Huang, Hsuan-Cheng
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2023, 13 (04)
  • [9] Genome variation discovery with high-throughput sequencing data
    Dalca, Adrian V.
    Brudno, Michael
    [J]. BRIEFINGS IN BIOINFORMATICS, 2010, 11 (01) : 3 - 14
  • [10] IDENTIFICATION OF ABERRANT PATHWAY AND NETWORK ACTIVITY FROM HIGH-THROUGHPUT DATA
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2012, 2012, : 2 - 6