Quantile spectral analysis of long-memory processes

被引:1
|
作者
Lim, Yaeji [1 ]
Oh, Hee-Seok [2 ]
机构
[1] Chung Ang Univ, Dept Appl Stat, Seoul 06974, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Laplace periodogram; Log periodogram regression; Long-memory process; Quantile periodogram; PERIODOGRAM; REGRESSION; MODELS; ESTIMATOR;
D O I
10.1007/s00181-021-02045-z
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study examines the problem of robust spectral analysis of long-memory processes. We investigate the possibility of using Laplace and quantile periodograms for a non-Gaussian distribution structure. The Laplace periodogram, derived by the least absolute deviations in the harmonic regression procedure, demonstrates its superiority in handling heavy-tailed noise and nonlinear distortion. In this study, we discuss an asymptotic distribution of the Laplace periodogram for long-memory processes. We also derive an asymptotic distribution of the quantile periodogram. Through numerical experiments, we demonstrate the robustness of the Laplace periodogram and the usefulness of the quantile periodogram in detecting the hidden frequency for the spectral analysis of the long-memory process under non-Gaussian distribution. Moreover, as an application of robust periodograms under the long-memory process, we discuss the long-memory parameter estimation based on a log periodogram regression approach.
引用
收藏
页码:1245 / 1266
页数:22
相关论文
共 50 条
  • [1] Quantile spectral analysis of long-memory processes
    Yaeji Lim
    Hee-Seok Oh
    [J]. Empirical Economics, 2022, 62 : 1245 - 1266
  • [2] Model selection for long-memory processes in the spectral domain
    Sousa-Vieira, M. E.
    Suarez-Gonzalez, A.
    Fernandez-Veiga, M.
    Lopez-Ardao, J. C.
    Lopez-Garcia, C.
    [J]. COMPUTER COMMUNICATIONS, 2013, 36 (13) : 1436 - 1449
  • [3] Sample quantile analysis for long-memory stochastic volatility models
    Ho, Hwai-Chung
    [J]. JOURNAL OF ECONOMETRICS, 2015, 189 (02) : 360 - 370
  • [4] Robust coherence analysis for long-memory processes
    Lim, Yaeji
    Oh, Hee-Seok
    [J]. APPLIED ECONOMICS LETTERS, 2021, 28 (05) : 335 - 342
  • [5] Long-Memory Processes and Applications
    Ding, Yiming
    Hu, Yaozhong
    Xiao, Weilin
    Yan, Litan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] A test for "long-memory" processes
    Thomson, DJ
    [J]. PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 561 - 564
  • [7] COVARIANCES ESTIMATION FOR LONG-MEMORY PROCESSES
    Wu, Wei Biao
    Huang, Yinxiao
    Zheng, Wei
    [J]. ADVANCES IN APPLIED PROBABILITY, 2010, 42 (01) : 137 - 157
  • [8] Empirical processes of long-memory sequences
    Wu, WB
    [J]. BERNOULLI, 2003, 9 (05) : 809 - 831
  • [9] The Sensitivity of Detrended Long-Memory Processes
    Banerjee, Anurag N.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (20) : 3770 - 3780
  • [10] Aggregation of Seasonal Long-Memory Processes
    Castro, Tomas del Barrio
    Rachinger, Heiko
    [J]. ECONOMETRICS AND STATISTICS, 2021, 17 : 95 - 106