Bayesian estimators for conditional hazard functions

被引:21
|
作者
McKeague, IW [1 ]
Tighiouart, M
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
life history data; metropolis-Hastings-Green algorithm; right censoring; time-dependent covariate effects;
D O I
10.1111/j.0006-341X.2000.01007.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article introduces a new Bayesian approach to the analysis of right-censored survival data. The hazard rate of interest is modeled as a product of conditionally independent stochastic processes corresponding to (1) a baseline hazard function and (2) a regression function representing the temporal influence of the covariates. These processes jump at times that form a time-homogeneous Poisson process and have a pairwise dependency structure for adjacent values. The two processes are assumed to be conditionally independent given their jump times. Features of the posterior distribution, such as the mean covariate effects and survival probabilities (conditional on the covariate), are evaluated using the Metropolis-Hastings-Green algorithm. We illustrate our methodology by an application to nasopharynx cancer survival data.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条
  • [1] Multivariate conditional hazard rate functions - an overview
    Shaked, Moshe
    Shanthikumar, J. George
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2015, 31 (03) : 285 - 296
  • [2] Bayesian nonparametric estimators derived from conditional Gibbs structures
    Lijoi, Antonio
    Prunster, Igor
    Walker, Stephen G.
    [J]. ANNALS OF APPLIED PROBABILITY, 2008, 18 (04): : 1519 - 1547
  • [3] A NOTE ON "BAYESIAN NONPARAMETRIC ESTIMATORS DERIVED FROM CONDITIONAL GIBBS STRUCTURES"
    Lijoi, Antonio
    Prunster, Igor
    Walker, Stephen G.
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (01): : 447 - +
  • [4] CONSTRUCTIVE NEURAL NETWORKS AS ESTIMATORS OF BAYESIAN DISCRIMINANT FUNCTIONS
    YEUNG, DY
    [J]. PATTERN RECOGNITION, 1993, 26 (01) : 189 - 204
  • [5] Bivariate Continuous Distributions with Specified Conditional Hazard Functions
    Balakrishnan, N.
    Castillo, Enrique
    Maria Sarabia, Jose
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (14) : 2473 - 2484
  • [6] Properties of estimators of baseline hazard functions in a semiparametric cure model
    Sugimoto, Tomoyuki
    Hamasaki, Toshimitsu
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (04) : 647 - 674
  • [7] Properties of estimators of baseline hazard functions in a semiparametric cure model
    Tomoyuki Sugimoto
    Toshimitsu Hamasaki
    [J]. Annals of the Institute of Statistical Mathematics, 2006, 58 : 647 - 674
  • [8] BAYESIAN NON-PARAMETRIC SIMULATION OF HAZARD FUNCTIONS
    Belyi, Dmitriy
    Popova, Elmira
    Morton, David
    Damien, Paul
    [J]. PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 467 - +
  • [9] Unified Conditional Probability Density Functions for Hybrid Bayesian Networks
    Delavarian, Mohadeseh
    Naghibzadeh, Mahmoud
    Emadi, Mahdi
    [J]. 2012 2ND INTERNATIONAL CONFERENCE ON UNCERTAINTY REASONING AND KNOWLEDGE ENGINEERING (URKE), 2012, : 40 - 43
  • [10] Bivariate Kumaraswamy Distribution Based on Conditional Hazard Functions: Properties and Application
    Mohammed, B. I.
    Hossain, Md. Moyazzem
    Aldallal, R. A.
    Mohamed, Mohamed S.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022