pyEDA: An Open-Source Python']Python Toolkit for Pre-processing and Feature Extraction of Electrodermal Activity

被引:19
|
作者
Aqajari, Seyed Amir Hossein [1 ]
Naeini, Emad Kasaeyan [2 ]
Mehrabadi, Milad Asgari [1 ]
Labbaf, Sina [2 ]
Dutt, Nikil [1 ,2 ,4 ]
Rahmani, Amir M. [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Comp Sci, Irvine, CA USA
[3] Univ Calif Irvine, Sch Nursing, Irvine, CA USA
[4] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92717 USA
基金
芬兰科学院; 美国国家科学基金会;
关键词
Health Monitoring; Internet of Things; Electrodermal Activity; Galvanic Skin Response; Physiological signals; Wearable Electronics; Machine Learning; Autoencoders; Convolutional Neural Networks; Open-Source; Toolkit; SENSORS;
D O I
10.1016/j.procs.2021.03.021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Physiological response is an automatic reaction that triggers a physical response to a stimulus such as stress, emotion, pain, etc. Examples include changes in heart rate, respiration, perspiration, and eye pupil dilation. Electrodermal Activity (EDA), also known as Galvanic Skin Response (GSR), measures changes in perspiration by detecting the changes in electrical conductivity of skin. Previous studies have already shown that EDA is one of the leading indicators for a stimulus. However, the EDA signal itself is not trivial to analyze. To detect different stimuli in human subjects, variety of features are extracted from EDA signals such as the number of peaks, max peak amplitude, to name a few, showing the prevalence of this signal in bio-medical as well as ubiquitous and wearable computing research. In this paper, we present an open-source Python toolkit for EDA signal preprocessing and statistical and automatic feature extraction. To the best of our knowledge, this is the first effort for developing a versatile and generic tool to extract any number of automatic features from EDA signals. We evaluate our toolkit using different machine learning algorithms applied to the Wearable Stress and Affect Detection (WESAD) dataset. Our results show higher validation accuracy for a stress detection task using the the features automatically extracted by pyEDA. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [1] Python']Python Indian Weather Radar Toolkit (pyiwr): An open-source Python']Python library for processing, analyzing and visualizing weather radar data
    Singh, Nitig
    Tyagi, Vaibhav
    Das, Saurabh
    Sahoo, Udaya Kumar
    Kundu, Shyam Sundar
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 81
  • [2] SigMT: An open-source Python']Python package for magnetotelluric data processing
    Ajithabh, K. S.
    Patro, Prasanta K.
    [J]. COMPUTERS & GEOSCIENCES, 2023, 171
  • [3] CAMeL Tools: An Open Source Python']Python Toolkit for Arabic Natural Language Processing
    Obeid, Ossama
    Zalmout, Nasser
    Khalifa, Salam
    Taji, Dima
    Oudah, Mai
    Alhafni, Bashar
    Inoue, Go
    Eryani, Fadhl
    Erdmann, Alexander
    Habash, Nizar
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 7022 - 7032
  • [4] PyEEG: An Open Source Python']Python Module for EEG/MEG Feature Extraction
    Bao, Forrest Sheng
    Liu, Xin
    Zhang, Christina
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
  • [5] PyLUSAT: An open-source Python']Python toolkit for GIS-based land use suitability analysis
    Chen, Changjie
    Judge, Jasmeet
    Hulse, David
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 151
  • [6] Python']Python-Microscope - a new open-source Python']Python library for the control of microscopes
    Pinto, David Miguel Susano
    Phillips, Mick A.
    Hall, Nicholas
    Mateos-Langerak, Julio
    Stoychev, Danail
    Pinto, Tiago Susano
    Booth, Martin J.
    Davis, Ilan
    Dobbie, Ian M.
    [J]. JOURNAL OF CELL SCIENCE, 2021, 134 (19)
  • [7] PCAViz: An Open-Source Python']Python/Java']JavaScript Toolkit for Visualizing Molecular Dynamics Simulations in the Web Browser
    Pacheco, Sayuri
    Karninsky, Jesse C.
    Kochnev, Iurii K.
    Durrant, Jacob D.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4087 - 4092
  • [8] OSAFT Library: An Open-Source Python']Python Library for Acoustofluidics
    Fankhauser, Jonas
    Goering, Christoph
    Dual, Juerg
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [9] Padasip: An open-source Python']Python toolbox for adaptive filtering
    Cejnek, Matous
    Vrba, Jan
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 65
  • [10] Open-source coupled aerostructural optimization using Python']Python
    Jasa, John P.
    Hwang, John T.
    Martins, Joaquim R. R. A.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (04) : 1815 - 1827