A CONVERGENCE TO BROWNIAN MOTION ON SUB-RIEMANNIAN MANIFOLDS

被引:10
|
作者
Gordina, Maria [1 ]
Laetsch, Thomas [1 ,2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Ctr Data Sci, 60 5th Ave, New York, NY 10011 USA
基金
美国国家科学基金会;
关键词
Brownian motion; sub-Riemannian manifold; hypoelliptic operator; random walk; HEAT KERNEL; INEQUALITIES;
D O I
10.1090/tran/6831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers a classical question of approximation of Brownian motion by a random walk in the setting of a sub-Riemannian manifold M. To construct such a random walk we first address several issues related to the degeneracy of such a manifold. In particular, we define a family of sub-Laplacian operators naturally connected to the geometry of the underlying manifold. In the case when M is a Riemannian (non-degenerate) manifold, we recover the Laplace-Beltrami operator. We then construct the corresponding random walk, and under standard assumptions on the sub-Laplacian and M we show that this random walk converges (at the level of semigroups) to a process, horizontal Brownian motion, whose infinitesimal generator is the sub-Laplacian. An example of the Heisenberg group equipped with a standard sub-Riemannian metric is considered in detail, in which case the sub-Laplacian we introduced is shown to be the sum of squares (Hormander's) operator.
引用
收藏
页码:6263 / 6278
页数:16
相关论文
共 50 条
  • [1] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [2] Holonomy of sub-Riemannian manifolds
    Falbel, E
    Gorodski, C
    Rumin, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (03) : 317 - 344
  • [3] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [4] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    [J]. Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [5] Sub-Laplacians on Sub-Riemannian Manifolds
    Maria Gordina
    Thomas Laetsch
    [J]. Potential Analysis, 2016, 44 : 811 - 837
  • [6] Sub-Laplacians on Sub-Riemannian Manifolds
    Gordina, Maria
    Laetsch, Thomas
    [J]. POTENTIAL ANALYSIS, 2016, 44 (04) : 811 - 837
  • [7] Quasiregular Mappings on Sub-Riemannian Manifolds
    Katrin Fässler
    Anton Lukyanenko
    Kirsi Peltonen
    [J]. The Journal of Geometric Analysis, 2016, 26 : 1754 - 1794
  • [8] MASS TRANSPORTATION ON SUB-RIEMANNIAN MANIFOLDS
    Figalli, Alessio
    Rifford, Ludovic
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 124 - 159
  • [9] Mass Transportation on Sub-Riemannian Manifolds
    Alessio Figalli
    Ludovic Rifford
    [J]. Geometric and Functional Analysis, 2010, 20 : 124 - 159
  • [10] On isometric immersions of sub-Riemannian manifolds
    Rovenski, Vladimir
    [J]. FILOMAT, 2023, 37 (25) : 8543 - 8551