A Latent Transformer for Disentangled Face Editing in Images and Videos

被引:28
|
作者
Yao, Xu [1 ,2 ]
Newson, Alasdair [1 ]
Gousseau, Yann [1 ]
Hellier, Pierre [2 ]
机构
[1] Inst Polytech Paris, LTCI, Telecom Paris, Paris, France
[2] InterDigital R&I, 975 Ave Champs Blancs, Cesson Sevigne, France
关键词
D O I
10.1109/ICCV48922.2021.01353
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High quality facial image editing is a challenging problem in the movie post-production industry, requiring a high degree of control and identity preservation. Previous works that attempt to tackle this problem may suffer from the entanglement of facial attributes and the loss of the person's identity. Furthermore, many algorithms are limited to a certain task. To tackle these limitations, we propose to edit facial attributes via the latent space of a StyleGAN generator, by training a dedicated latent transformation network and incorporating explicit disentanglement and identity preservation terms in the loss function. We further introduce a pipeline to generalize our face editing to videos. Our model achieves a disentangled, controllable, and identity-preserving facial attribute editing, even in the challenging case of real (i.e., non-synthetic) images and videos. We conduct extensive experiments on image and video datasets and show that our model outperforms other state-of-the-art methods in visual quality and quantitative evaluation. Source codes are available at https://github.com/InterDigitalInc/latent-transformer.
引用
收藏
页码:13769 / 13778
页数:10
相关论文
共 50 条
  • [1] Image-to-Image Translation With Disentangled Latent Vectors for Face Editing
    Dalva, Yusuf
    Pehlivan, Hamza
    Hatipoglu, Oyku Irmak
    Moran, Cansu
    Dundar, Aysegul
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14777 - 14788
  • [2] Disentangled Face Attribute Editing via Instance-Aware Latent Space Search
    Han, Yuxuan
    Yang, Jiaolong
    Fu, Ying
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 715 - 721
  • [3] NeRFFaceEditing: Disentangled Face Editing in Neural Radiance Fields
    Jiang, Kaiwen
    Chen, Shu-Yu
    Liu, Feng-Lin
    Fu, Hongbo
    Gao, Lin
    [J]. PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [4] A Compact and Semantic Latent Space for Disentangled and Controllable Image Editing
    Lesne, Gwilherm
    Gousseau, Yann
    Ladjal, Said
    Newson, Alasdair
    [J]. 20TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, CVMP 2023, 2023,
  • [5] Toward responsible face datasets: modeling the distribution of a disentangled latent space for sampling face images from demographic groups
    Rahimi, Parsa
    Ecabert, Christophe
    Marcel, Sebastien
    [J]. 2023 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS, IJCB, 2023,
  • [6] Latent to Latent: A Learned Mapper for Identity Preserving Editing of Multiple Face Attributes in StyleGAN-generated Images
    Khodadadeh, Siavash
    Ghadar, Shabnam
    Motiian, Saeid
    Lin, Wei-An
    Boloni, Ladislau
    Kalarot, Ratheesh
    [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3677 - 3685
  • [7] DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control
    Chen, Shu-Yu
    Liu, Feng-Lin
    Lai, Yu-Kun
    Rosin, Paul L.
    Li, Chunpeng
    Fu, Hongbo
    Gao, Lin
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [8] Style Transformer: Unpaired Text Style Transfer without Disentangled Latent Representation
    Dai, Ning
    Liang, Jianze
    Qiu, Xipeng
    Huang, Xuanjing
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5997 - 6007
  • [9] Disentangled face editing via individual walk in personalized facial semantic field
    Chengde Lin
    Shengwu Xiong
    Xiongbo Lu
    [J]. The Visual Computer, 2023, 39 : 6005 - 6014
  • [10] Disentangled face editing via individual walk in personalized facial semantic field
    Lin, Chengde
    Xiong, Shengwu
    Lu, Xiongbo
    [J]. VISUAL COMPUTER, 2023, 39 (12): : 6005 - 6014