Note on the N=2 super Yang-Mills gauge theory in a noncommutative differential geometry

被引:0
|
作者
Okumura, Y [1 ]
机构
[1] Chubu Univ, Dept Nat Sci, Kasugai, Aichi 487, Japan
来源
EUROPEAN PHYSICAL JOURNAL C | 1998年 / 1卷 / 3-4期
关键词
D O I
10.1007/s100520050119
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The N = 2 super-Yang-Mills gauge theory is reconstructed in a non-commutative differential geometry (NCG). Our NCG with one-form bases dx(mu) on the Minkowski space M-4 and chi on the discrete space Z(2) is a generalization of the ordinary differential geometry on the continuous manifold. Thus, the generalized gauge field is written as A(x, y) = A(mu)(x, y)dx(mu)+Phi(x, y)chi where y is the argument in Z(2). Phi(x, y) corresponds to the scalar and pseudo-scalar bosons in the N = 2 super Yang-Mills gauge theory whereas it corresponds to the Higgs field in the ordinary spontaneously broken gauge theory. Using the generalized field strength constructed from A(x, y) we can obtain the bosonic Lagrangian of the N = 2 super Yang-Mills gauge theory in the same way as Chamseddine first introduced the supersymmetric Lagrangian of the N = 2 and N = 4 super Yang-Mills gauge theories within the framework of Connes's NCG. The fermionic sector is introduced so as to satisfy the invariance of the total Lagrangian with respect to supersymmetry.
引用
收藏
页码:735 / 738
页数:4
相关论文
共 50 条
  • [1] The superspace representation of super Yang-Mills theory on noncommutative geometry
    Shimojo, Masafumi
    Ishihara, Satoshi
    Kataoka, Hironobu
    Matsukawa, Atsuko
    Sato, Hikaru
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (04):
  • [2] The supersymmetric Yang-Mills theory on noncommutative geometry
    Sato, Hikaru
    Ishihara, Satoshi
    Kataoka, Hironobu
    Matsukawa, Atsuko
    Shimojo, Masafumi
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (07):
  • [3] TOPOLOGICAL YANG-MILLS THEORY FROM NONCOMMUTATIVE GEOMETRY
    HWANG, DS
    LEE, CY
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (07) : 3254 - 3262
  • [4] GENERAL GAUGE CALCULATIONS IN N=4 SUPER YANG-MILLS THEORY
    STOREY, D
    [J]. PHYSICS LETTERS B, 1981, 105 (2-3) : 171 - 173
  • [5] The noncommutative geometry of Yang-Mills fields
    Boeijink, Jord
    van Suijlekom, Walter D.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1122 - 1134
  • [6] Geometry of N = 1 super Yang-Mills theory in curved superspace
    Konechny, A
    Schwarz, A
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (02) : 97 - 110
  • [7] Non commutative geometry and super Yang-Mills theory
    Bigatti, D
    [J]. PHYSICS LETTERS B, 1999, 451 (3-4) : 324 - 335
  • [8] A NOTE ON THE SEIBERG-WITTEN SOLUTION OF N=2 SUPER YANG-MILLS THEORY
    LINDSTROM, U
    ROCEK, M
    [J]. PHYSICS LETTERS B, 1995, 355 (3-4) : 492 - 493
  • [9] Holography and noncommutative Yang-Mills theory
    Li, M
    Wu, YS
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (10) : 2084 - 2087
  • [10] Instanton calculations in N=2 super Yang-Mills theory
    Flume, R
    Poghossian, R
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 : 168 - 173