Geometric separators for finite-element meshes

被引:57
|
作者
Miller, GL [1 ]
Teng, SH
Thurston, W
Vavasis, SA
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] MIT, Comp Sci Lab, Cambridge, MA 02139 USA
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[6] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[7] Xerox Corp, Palo Alto Res Ctr, Palo Alto, CA 94304 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1998年 / 19卷 / 02期
关键词
graph separators; finite elements; mesh partitioning; domain decomposition; computational geometry; sparse matrix computations; conformal mapping; center points;
D O I
10.1137/S1064827594262613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a class of graphs that would occur naturally in finite-element and finite-difference problems and we prove a bound on separators for this class of graphs. Graphs in this class are embedded in d-dimensional space in a certain manner. For d-dimensional graphs our separator bound is O(n((d-1)/d)), which is the best possible bound. We also propose a simple randomized algorithm to find this separator in O(n) time. This separator algorithm can be used to partition the mesh among processors of a parallel computer and can also be used for the nested dissection sparse elimination algorithm.
引用
收藏
页码:364 / 386
页数:23
相关论文
共 50 条