Genome Evolution of Invasive Methicillin-Resistant Staphylococcus aureus in the Americas

被引:12
|
作者
Smith, Joshua T. [1 ,2 ]
Eckhardt, Elissa M. [3 ,4 ]
Hansel, Nicole B. [3 ,4 ]
Eliato, Tahmineh Rahmani [5 ]
Martin, Isabella W. [3 ,4 ]
Andam, Cheryl P. [6 ]
机构
[1] Univ New Hampshire, Dept Mol Cellular & Biomed Sci, Durham, NH 03824 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Dartmouth Hitchcock Med Ctr, Lebanon, NH 03766 USA
[4] Dartmouth Coll, Geisel Sch Med, 1 Med Ctr Dr, Lebanon, NH 03756 USA
[5] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA
[6] SUNY Albany, Dept Biol Sci, Albany, NY 12222 USA
来源
MICROBIOLOGY SPECTRUM | 2022年 / 10卷 / 03期
基金
美国国家卫生研究院;
关键词
Staphylococcus aureus; bloodstream infection; invasive; genome evolution; methicillin resistance; MRSA; invasive microorganisms; MEC SCCMEC; EPIDEMIOLOGY; INFECTIONS; OUTBREAK; SEQUENCE; REPLACEMENT; QUALITY; CLONES; USA300; MODEL;
D O I
10.1128/spectrum.00201-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bloodstream infections due to S. aureus cause significant patient morbidity and mortality worldwide, exacerbated by the emergence and spread of methicillin resistant S. aureus (MRSA). This study provides important insights on the evolution and long-distance geographic expansion of two distinct MRSA lineages that predominate in bloodstream infections in the past 5 decades. Staphylococcus aureus causes a variety of debilitating and life-threatening diseases, and thus remains a challenging global health threat. S. aureus is remarkably diverse, yet only a minority of methicillin-resistant S. aureus (MRSA) clones have caused pandemic proportions of diseases. The genetic drivers of the successful dissemination of some clones across wide geographical expanses remain poorly understood. We analyzed 386 recently published MRSA genomes from bloodstream infections sampled in North, Central, and South America from 2011 to 2018. Here, we show that MRSA-associated bloodstream infections were attributable to two genetically distinct lineages. One lineage consisted almost exclusively of sequence type (ST) 8, which emerged in 1964. A second lineage emerged in 1986 and consisted of STs 5, 105, and 231. The two lineages have simultaneously disseminated across geographically distant sites. Sublineages rapidly diverged within locations in the early 2000s. Their diversification was associated with independent acquisitions of unique variants of the mobile mecA-carrying chromosomal cassette and distinct repertoires of antimicrobial resistance genes. We show that the evolution and spread of invasive multidrug-resistant MRSA in the Americas was driven by transcontinental dissemination, followed by more recent establishment and divergence of local pathogen populations. Our study highlights the need for continued international surveillance of high-risk clones to control the global health threat of multidrug resistance. IMPORTANCE Bloodstream infections due to S. aureus cause significant patient morbidity and mortality worldwide, exacerbated by the emergence and spread of methicillin resistant S. aureus (MRSA). This study provides important insights on the evolution and long-distance geographic expansion of two distinct MRSA lineages that predominate in bloodstream infections in the past 5 decades. The success of these two lineages partly lies on their acquisition of a diverse set of antimicrobial resistance genes and of unique variants of the mobile genetic element SCCmec that carries the gene mecA conferring resistance to beta-lactams. High-risk antimicrobial resistant clones can therefore rapidly disseminate across long distances and establish within local communities within a short period of time. These results have important implications for global initiatives and local epidemiological efforts to monitor and control invasive MRSA infections and transcontinental spread of multidrug resistance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The emergence and evolution of methicillin-resistant Staphylococcus aureus
    Hiramatsu, K
    Cui, L
    Kuroda, M
    Ito, T
    TRENDS IN MICROBIOLOGY, 2001, 9 (10) : 486 - 493
  • [2] The molecular evolution of methicillin-resistant Staphylococcus aureus
    Deurenberg, R. H.
    Vink, C.
    Kalenic, S.
    Friedrich, A. W.
    Bruggeman, C. A.
    Stobberingh, E. E.
    CLINICAL MICROBIOLOGY AND INFECTION, 2007, 13 (03) : 222 - 235
  • [3] Trends in Invasive Methicillin-Resistant Staphylococcus aureus Infections
    Iwamoto, Martha
    Mu, Yi
    Lynfield, Ruth
    Bulens, Sandra N.
    Nadle, Joelle
    Aragon, Deborah
    Petit, Susan
    Ray, Susan M.
    Harrison, Lee H.
    Dumyati, Ghinwa
    Townes, John M.
    Schaffner, William
    Gorwitz, Rachel J.
    Lessa, Fernanda C.
    PEDIATRICS, 2013, 132 (04) : E817 - E824
  • [4] Genome content determination in methicillin-resistant Staphylococcus aureus
    Francois, Patrice
    Hernandez, David
    Schrenzel, Jacques
    FUTURE MICROBIOLOGY, 2007, 2 (02) : 187 - 198
  • [5] Methicillin-resistant Staphylococcus aureus
    Turner, Evie
    Brownlee, Keith G.
    Denton, Miles
    JOURNAL OF CYSTIC FIBROSIS, 2013, 12 (02) : 184 - 185
  • [6] Methicillin-resistant Staphylococcus aureus
    Lee, Andie S.
    de Lencastre, Herminia
    Garau, Javier
    Kluytmans, Jan
    Malhotra-Kumar, Surbhi
    Peschel, Andreas
    Harbarth, Stephan
    NATURE REVIEWS DISEASE PRIMERS, 2018, 4
  • [7] Methicillin-resistant Staphylococcus aureus
    Losa, JE
    Barba, R
    Delgado-Iribarren, A
    MEDICINA CLINICA, 2002, 119 (19): : 755 - 756
  • [8] Methicillin-resistant staphylococcus aureus
    Ellie J. C. Goldstein
    Current Infectious Disease Reports, 2000, 2 (5) : 431 - 432
  • [9] Methicillin-resistant Staphylococcus aureus
    Gosbell, IB
    AMERICAN JOURNAL OF CLINICAL DERMATOLOGY, 2004, 5 (04) : 239 - 259
  • [10] Methicillin-resistant Staphylococcus aureus
    不详
    Nature Reviews Disease Primers, 4 (1) : 18034