Moduli of vector bundles on curves in positive characteristics

被引:12
|
作者
Joshi, K [1 ]
Xia, EZ [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
关键词
algebraic curves; Frobenius morphism; moduli schemes; vector bundles;
D O I
10.1023/A:1001864401294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a projective curve of genus 2 over an algebraically closed field of characteristic 2. The Frobenius map on X induces a rational map on the moduli scheme of rank-2 bundles. We show that up to isomorphism, there is only one (up to tensoring by an order two line bundle) semi-stable vector bundle of rank 2 (with determinant equal to a theta characteristic) whose Frobenius pull-back is not semi-stable. The indeterminacy of the Frobenius map at this point can be resolved by introducing Higgs bundles.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 50 条
  • [1] Rationality of moduli of vector bundles on curves
    King, A
    Schofield, A
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (04): : 519 - 535
  • [2] MODULI OF VECTOR BUNDLES ON CURVES WITH PARABOLIC STRUCTURES
    SESHADRI, CS
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (01) : 124 - 126
  • [3] Rational curves on moduli spaces of vector bundles
    Kilaru, S
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (03): : 217 - 226
  • [4] Maximality of moduli spaces of vector bundles on curves
    Brugalle, Erwan
    Schaffhauser, Florent
    [J]. EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2022, 6
  • [5] Degenerations of the moduli spaces of vector bundles on curves
    Seshadri, CS
    [J]. MODULI SPACES IN ALGEBRAIC GEOMETRY, 2000, 1 : 205 - +
  • [6] Rational curves on moduli spaces of vector bundles
    Sambaiah Kilaru
    [J]. Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1998, 108 : 217 - 226
  • [7] A stratification of the moduli space of vector bundles on curves
    Brambila-Paz, L
    Lange, H
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 494 : 173 - 187
  • [8] Vector bundles on the moduli stack of elliptic curves
    Meier, Lennart
    [J]. JOURNAL OF ALGEBRA, 2015, 428 : 425 - 456
  • [9] On the ring of unipotent vector bundles on elliptic curves in positive characteristics
    Schroeer, Stefan
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 110 - 124
  • [10] Degenerations of the moduli spaces of vector bundles on curves I
    D. S. Nagaraj
    C. S. Seshadri
    [J]. Proceedings - Mathematical Sciences, 1997, 107 : 101 - 137