Tailoring of a catalyst La0.8Ce0.1Ni0.4Ti0.6O3-δ interlayer via in situ exsolution for a catalytic membrane reactor

被引:7
|
作者
Luo, Ping [1 ]
Xu, Zhi [1 ]
Zheng, Qiankun [1 ]
Tan, Jinkun [1 ]
Zhang, Zhicheng [1 ]
Liu, Zhengkun [1 ]
Zhang, Guangru [1 ]
Jin, Wanqin [1 ]
机构
[1] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Coll Chem Engn, 30 Puzhu Rd S, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
61;
D O I
10.1039/d1re00103e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The application of catalytic membrane reactors (CMRs) based on a perovskite-type oxygen-permeable membrane has been greatly limited by the instability of a membrane material. In this study, A-site deficient perovskite La0.8Ce0.1Ni0.4Ti0.6O3-delta (LCNT) as a modification porous interlayer (between a Ni/Al2O3 catalyst and membrane) was applied on a Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) four-channel hollow fiber membrane to construct a CMR. Ni nanoparticles were in situ exsolved from the LCNT surfaces and used for partial oxidation of methane (POM). The porous LCNT layer shows excellent attachment, effective protection and enhanced catalytic activity to the BSCF four-channel hollow fiber membrane. The LCNT/BSCF CMR shows a more than 700 h stability in POM which is much higher than that without the modification of the LCNT porous layer (which is less than 150 h). At 900 degrees C, more than 99% CH4 conversion and CO selectivity have been achieved in the LCNT/BSCF CMR. Our results have demonstrated the feasibility of coupling an in situ exsolution Ni nano-catalyst porous layer with the perovskite-type membrane, providing a new strategy for enhancing both the stability and catalytic activity of CMRs.
引用
收藏
页码:1395 / 1403
页数:9
相关论文
共 50 条
  • [1] Exsolution of Ni nanoparticles from La0.4Sr0.4Ti0.8Ni0.2O3-δ perovskite for ethanol steam reforming
    Piazzolla, Fernando
    Moraes, Tamara S.
    Figueiredo, Stefany S.
    de Paula, Dryade F.
    Veiga, Emerson L. dos Santos
    Rodella, Cristiane B.
    Fonseca, Fabio C.
    CATALYSIS TODAY, 2025, 444
  • [2] Electrochemical performance and stability of La0.2Sr0.8Ti0.9Ni0.1O3-δ and La0.2Sr0.8Ti0.9Ni0.1O3-δ - Gd0.2Ce0.8O2-δ anode with anode interlayer in H2 and CH4
    Park, Byung Hyun
    Choi, Gyeong Man
    ELECTROCHIMICA ACTA, 2015, 182 : 39 - 46
  • [3] Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2 (Sr0.9La0.1)0.9Ti0.9Ni0.1O3composite solid oxide fuel cell anodes
    Shen, X.
    Chen, T.
    Bishop, S. R.
    Perry, N. H.
    Tuller, H. L.
    Sasaki, K.
    JOURNAL OF POWER SOURCES, 2017, 370 : 122 - 130
  • [4] La0.6Ca0.4Fe0.8Ni0.2O3-δ - Sm0.2Ce0.8O1.9 composites as symmetrical bi-electrodes for solid oxide fuel cells through infiltration and in-situ exsolution
    Ding, Xifeng
    Liu, Hao
    Gao, Zhipeng
    Hua, Guixiang
    Wang, Lixi
    Ding, Liming
    Yuan, Guoliang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (39) : 24968 - 24977
  • [5] Construction of Multifunctional Nanoarchitectures in One Step on a Composite Fuel Catalyst through In Situ Exsolution of La0.5Sr0.5Fe0.8Ni0.1Nb0.1O3-δ
    Wu, Xing
    Yu, Yan
    Chen, Yan
    Li, Linsen
    Ma, Zi-Feng
    Yin, Yi-Mei
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (31) : 34890 - 34900
  • [6] Tuning reduction conditions to understand and control Ni exsolution from Sr0.8La0.1Ca0.1Ti0.94Ni0.06O3-d
    O'Leary, Willis
    Giordano, Livia
    Rupp, Jennifer L. M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (39) : 21429 - 21442
  • [7] Densification of Ce0.9Gd0.1O2-δ interlayer to improve the stability of La0.6Sr0.4 CO0.2Fe0.8O3-δ/Ce0.9Gd0.1O2-δ interface and SOFC
    Wang, Guiyun
    Zhang, Yongliang
    Han, Minfang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 857
  • [8] Thermoanalysis, nonstoichiometry and thermal expansion of La0.4Sr0.6Co0.2Fe0.8O3-δ, La0.2Sr0.8Co0.2Fe0.8O3-δ, La0.9Sr0.1Co1/3Fe1/3Ni1/3O3-δ and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3-δ perovskites
    Swierczek, Konrad
    SOLID STATE IONICS, 2008, 179 (1-6) : 126 - 130
  • [9] In-situ exsolution of Ni nanoparticles to achieve an active and stable solid oxide fuel cell anode catalyst on A-site deficient La0.4Sr0.4Ti0.94Ni0.06O3-3
    Lee, Jong Jun
    Kim, Kyeounghak
    Kim, Kyeong Joon
    Kim, Hyung Jun
    Lee, Young Min
    Shin, Tae Ho
    Han, Jeong Woo
    Lee, Kang Taek
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 103 : 264 - 274
  • [10] Durability test on coral Ce0.9Gd0.1O2-δ-La0.6Sr0.4Co0.2Fe0.8O3-δ with La0.6Sr0.4Co0.2Fe0.8O3-δ current collector working in SOFC and SOEC modes
    Sar, Jaroslaw
    Schefold, Josef
    Brisse, Annabelle
    Djurado, Elisabeth
    ELECTROCHIMICA ACTA, 2016, 201 : 57 - 69