Unknot Diagrams Requiring a Quadratic Number of Reidemeister Moves to Untangle

被引:12
|
作者
Hass, Joel [1 ]
Nowik, Tahl [2 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Reidemister moves; Unknot; KNOT DIAGRAMS; INVARIANTS;
D O I
10.1007/s00454-009-9156-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given any knot diagram E, we present a sequence of knot diagrams of the same knot type for which the minimum number of Reidemeister moves required to pass to E is quadratic with respect to the number of crossings. These bounds apply both in S (2) and in a"e(2).
引用
收藏
页码:91 / 95
页数:5
相关论文
共 20 条
  • [1] Unknot Diagrams Requiring a Quadratic Number of Reidemeister Moves to Untangle
    Joel Hass
    Tahl Nowik
    Discrete & Computational Geometry, 2010, 44 : 91 - 95
  • [2] ON THE NUMBER OF UNKNOT DIAGRAMS
    Medina, Carolina
    Ramirez-Alfonsin, Jorge
    Salazar, Gelasio
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 306 - 326
  • [3] Reidemeister moves in Gauss diagrams
    Ganzell, Sandy
    Lehet, Ellen
    Lopez, Cristina
    Magallon, Gilbert
    Thompson, Alyson
    INVOLVE, A JOURNAL OF MATHEMATICS, 2021, 14 (03): : 431 - 438
  • [4] Realizing exterior Cromwell moves on rectangular diagrams by Reidemeister moves
    Ando, Tatsuo
    Hayashi, Chuichiro
    Nishikawa, Yuki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (05)
  • [5] Reidemeister moves and a polynomial of virtual knot diagrams
    Jeong, Myeong-Ju
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (02)
  • [6] The number of Reidemeister moves needed for unknotting
    Hass, J
    Lagarias, JC
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 399 - 428
  • [7] The number of Reidemeister moves for splitting a link
    Hayashi, C
    MATHEMATISCHE ANNALEN, 2005, 332 (02) : 239 - 252
  • [8] The number of Reidemeister moves for splitting a link
    Chuichiro Hayashi
    Mathematische Annalen, 2005, 332 : 239 - 252
  • [9] Unknotting number and number of Reidemeister moves needed for unlinking
    Hayashi, Chuichiro
    Hayashi, Miwa
    Nowik, Tahl
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (05) : 1467 - 1474
  • [10] MINIMAL SEQUENCES OF REIDEMEISTER MOVES ON DIAGRAMS OF TORUS KNOTS
    Hayashi, Chuichiro
    Hayashi, Miwa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (07) : 2605 - 2614