Three types of poultry products representing differences in skin coverage were tested to determine the ability of Pseudomonas aeruginosa to inhibit growth of Campylobacter jejuni. Processed ready-to-cook poultry carcasses were obtained from the Poultry Research Unit at Auburn University and were not subjected to any treatment to reduce or eliminate the native microflora on the carcasses. Carcasses were cut into wing sections (drumette, flat, tip), split breast pieces (with and without bone), and boneless, skinless breast pieces. Equal numbers of the 3 product types were subjected to 1 of 6 treatments: 1) uninoculated, 2) C. jejuni only, 3) P. aeruginosa type 1 only, 4) P. aeruginosa type 2 only, 5) C. jejuni + P. aeruginosa type 1, or 6) C. jejuni + P. aeruginosa type 2. Products were inoculated at 10(4) to 10(5) cfu. Postinoculation, equal numbers of product type were also subjected to the following: 1) aerobic or vacuum packaging, 2) storage temperature of 4 or 10 degrees C, and 3) storage of 0, 1, 2, 3, or 4d. Products were sampled after storage duration to determine the population of C. jejuni and P. aeruginosa. Individual pieces were rinsed with 50 mL of buffered peptone water. The recovered rinse was used to make appropriate dilutions and spiral plated onto CampyCefex and Pseudomonas P agars. Campy-Cefex plates were incubated microaerophilically at 42 degrees C for 48 h, whereas Pseudomonas P plates were incubated aerobically at 37 degrees C for 24 to 48 h. Random suspect colonies on Campy-Cefex plates were confirmed by cell morphology when viewed under microscopic examination. Suspect colonies on Pseudomonas P plates produced a blue color in the medium indicative of glycerol reduction. At both 4 and 10 degrees C, neither type of P. aeruginosa inhibited the growth or survival of C. jejuni compared to plates that were inoculated with C. jejuni only.