Deep reinforcement learning-based optimal data-driven control of battery energy storage for power system frequency support

被引:14
|
作者
Yan, Ziming [1 ]
Xu, Yan [1 ]
Wang, Yu [1 ]
Feng, Xue [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Singapore Inst Technol, Singapore, Singapore
关键词
power generation control; optimisation; frequency control; secondary cells; battery storage plants; optimal control; learning (artificial intelligence); power engineering computing; battery lifetime degradation; battery cycle aging cost; generation cost; total operational cost; power system frequency support; BESS controller performance; optimal BESS control method; three-area power system; optimal data-driven control; battery energy storage system; power system frequency control; battery aging; intensive charge-discharge cycles; high-operating costs; deep reinforcement learning; data-driven approach; real-time power imbalance mitigation; unscheduled interchange price; actor-critic model; ION BATTERIES; DEGRADATION; COST;
D O I
10.1049/iet-gtd.2020.0884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A battery energy storage system (BESS) is an effective solution to mitigate real-time power imbalance by participating in power system frequency control. However, battery aging resulted from intensive charge-discharge cycles will inevitably lead to lifetime degradation, which eventually incurs high-operating costs. This study proposes a deep reinforcement learning-based data-driven approach for optimal control of BESS for frequency support considering the battery lifetime degradation. A cost model considering battery cycle aging cost, unscheduled interchange price, and generation cost is proposed to estimate the total operational cost of BESS for power system frequency support, and an actor-critic model is designed for optimising the BESS controller performance. The effectiveness of the proposed optimal BESS control method is verified in a three-area power system.
引用
收藏
页码:6071 / 6078
页数:8
相关论文
共 50 条
  • [1] Reinforcement Learning-based Energy Storage System Control for Optimal Virtual Power Plant Operation
    Kwon K.-B.
    Park J.-Y.
    Jung H.
    Hong S.
    Heo J.-H.
    Transactions of the Korean Institute of Electrical Engineers, 2023, 72 (11): : 1586 - 1592
  • [2] Battery Health-Aware and Deep Reinforcement Learning-Based Energy Management for Naturalistic Data-Driven Driving Scenarios
    Tang, Xiaolin
    Zhang, Jieming
    Pi, Dawei
    Lin, Xianke
    Grzesiak, Lech M.
    Hu, Xiaosong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 948 - 964
  • [3] A survey on load frequency control using reinforcement learning-based data-driven controller
    Muduli, Rasananda
    Jena, Debashisha
    Moger, Tukaram
    APPLIED SOFT COMPUTING, 2024, 166
  • [4] Data-Driven Hierarchical Optimal Allocation of Battery Energy Storage System
    Wan, Tong
    Tao, Yuechuan
    Qiu, Jing
    Lai, Shuying
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (04) : 2097 - 2109
  • [5] Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level
    Kang, Hyuna
    Jung, Seunghoon
    Kim, Hakpyeong
    Jeoung, Jaewon
    Hong, Taehoon
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [6] Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning
    Harrold, Daniel J. B.
    Cao, Jun
    Fan, Zhong
    ENERGY, 2022, 238
  • [7] Data-driven Economic Control of Battery Energy Storage System Considering Battery Degradation
    Yan, Ziming
    Xu, Yan
    Wang, Yu
    Feng, Xue
    2019 9TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES), 2019,
  • [8] Decentralized optimal voltage control for wind farm with deep learning-based data-driven modeling
    Li, Xueping
    Huang, Sheng
    Qu, Yinpeng
    Luo, Derong
    Peng, Hanzhi
    Wu, Qiuwei
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 161
  • [9] Optimal Scheduling of Battery Energy Storage Systems Using a Reinforcement Learning-based Approach
    Selim, Alaa
    Mo, Huadong
    Pota, Hemanshu
    Dong, Daoyi
    IFAC PAPERSONLINE, 2023, 56 (02): : 11741 - 11747
  • [10] Fault Diagnosis of Data-Driven Photovoltaic Power Generation System Based on Deep Reinforcement Learning
    Dai, Shuang
    Wang, Dingmei
    Li, Weijun
    Zhou, Qiang
    Tian, Guangke
    Dong, Haiying
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021