Deep reinforcement learning for dynamic scheduling of a flexible job shop

被引:73
|
作者
Liu, Renke [1 ]
Piplani, Rajesh [1 ]
Toro, Carlos [2 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
[2] Vicomtech Res Ctr, San Sebastian, Spain
关键词
Dynamic scheduling; distributed multi-agent systems; flexible job shop; hierarchical scheduling; deep reinforcement learning; DISPATCHING RULES; TIME; SELECTION;
D O I
10.1080/00207543.2022.2058432
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ability to handle unpredictable dynamic events is becoming more important in pursuing agile and flexible production scheduling. At the same time, the cyber-physical convergence in production system creates massive amounts of industrial data that needs to be mined and analysed in real-time. To facilitate such real-time control, this research proposes a hierarchical and distributed architecture to solve the dynamic flexible job shop scheduling problem. Double Deep Q-Network algorithm is used to train the scheduling agents, to capture the relationship between production information and scheduling objectives, and make real-time scheduling decisions for a flexible job shop with constant job arrivals. Specialised state and action representations are proposed to handle the variable specification of the problem in dynamic scheduling. Additionally, a surrogate reward-shaping technique to improve learning efficiency and scheduling effectiveness is developed. A simulation study is carried out to validate the performance of the proposed approach under different scenarios. Numerical results show that not only does the proposed approach deliver superior performance as compared to existing scheduling strategies, its advantages persist even if the manufacturing system configuration changes.
引用
收藏
页码:4049 / 4069
页数:21
相关论文
共 50 条
  • [1] Dynamic flexible job shop scheduling based on deep reinforcement learning
    Yang, Dan
    Shu, Xiantao
    Yu, Zhen
    Lu, Guangtao
    Ji, Songlin
    Wang, Jiabing
    He, Kongde
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024,
  • [3] Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling with Random Job Arrival
    Chang, Jingru
    Yu, Dong
    Hu, Yi
    He, Wuwei
    Yu, Haoyu
    [J]. PROCESSES, 2022, 10 (04)
  • [4] Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
    Gui, Yong
    Tang, Dunbing
    Zhu, Haihua
    Zhang, Yi
    Zhang, Zequn
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 180
  • [5] Dynamic flexible job shop scheduling algorithm based on deep reinforcement learning
    Zhao, Tianrui
    Wang, Yanhong
    Tan, Yuanyuan
    Zhang, Jun
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 5099 - 5104
  • [6] Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
    Luo, Shu
    Zhang, Linxuan
    Fan, Yushun
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 159
  • [7] Dynamic Job Shop Scheduling via Deep Reinforcement Learning
    Liang, Xinjie
    Song, Wen
    Wei, Pengfei
    [J]. 2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 369 - 376
  • [8] Deep reinforcement learning for flexible assembly job shop scheduling problem
    Hu, Yifan
    Zhang, Liping
    Bai, Xue
    Tang, Qiuhua
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (02): : 153 - 160
  • [9] A DEEP REINFORCEMENT LEARNING BASED SOLUTION FOR FLEXIBLE JOB SHOP SCHEDULING PROBLEM
    Han, B. A.
    Yang, J. J.
    [J]. INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2021, 20 (02) : 375 - 386
  • [10] Solving flexible job shop scheduling problems via deep reinforcement learning
    Yuan, Erdong
    Wang, Liejun
    Cheng, Shuli
    Song, Shiji
    Fan, Wei
    Li, Yongming
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245