A Bayesian Mixture Approach to Modeling Spatial Activation Patterns in Multisite fMRI Data

被引:16
|
作者
Kim, Seyoung [1 ]
Smyth, Padhraic [2 ]
Stern, Hal [3 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
[2] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Brain activation; functional magnetic resonance imaging (fMRI); hierarchical model; VARIABILITY; RELIABILITY; INFERENCE;
D O I
10.1109/TMI.2010.2044045
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a probabilistic model for analyzing spatial activation patterns in multiple functional magnetic resonance imaging (fMRI) activation images such as repeated observations on an individual or images from different individuals in a clinical study. Instead of taking the traditional approach of voxel-by-voxel analysis, we directly model the shape of activation patterns by representing each activation cluster in an image as a Gaussian-shaped surface. We assume that there is an unknown true template pattern and that each observed image is a noisy realization of this template. We model an individual image using a mixture of experts model with each component representing a spatial activation cluster. Taking a nonparametric Bayesian approach, we use a hierarchical Dirichlet process to extract common activation clusters from multiple images and estimate the number of such clusters automatically. We further extend the model by adding random effects to the shape parameters to allow for image-specific variation in the activation patterns. Using a Bayesian framework, we learn the shape parameters for both image-level activation patterns and the template for the set of images by sampling from the posterior distribution of the parameters. We demonstrate our model on a dataset collected in a large multisite fMRI study.
引用
收藏
页码:1260 / 1274
页数:15
相关论文
共 50 条
  • [1] A Nonparametric Bayesian approach to detecting spatial activation patterns in fMRI data
    Kim, Seyoung
    Smyth, Padhraic
    Stern, Hal
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 217 - 224
  • [2] Spatial mixture modeling of fMRI data
    Hartvig, NV
    Jensen, JL
    [J]. HUMAN BRAIN MAPPING, 2000, 11 (04) : 233 - 248
  • [3] Bayesian Spatial Multivariate Receptor Modeling for Multisite Multipollutant Data
    Park, Eun Sug
    Hopke, Philip K.
    KiM, Inyoung
    Tan, Shuman
    Spiegelman, Clifford H.
    [J]. TECHNOMETRICS, 2018, 60 (03) : 306 - 318
  • [4] A Bayesian hierarchical framework for spatial modeling of fMRI data
    Bowman, F. DuBois
    Caffo, Brian
    Bassett, Susan Spear
    Kilts, Clinton
    [J]. NEUROIMAGE, 2008, 39 (01) : 146 - 156
  • [5] Detection of spatial activation patterns as unsupervised segmentation of fMRI data
    Golland, Polina
    Golland, Yulia
    Malach, Rafael
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 110 - +
  • [6] A Bayesian approach to modeling dynamic effective connectivity with fMRI data
    Bhattacharya, S
    Ho, MHR
    Purkayastha, S
    [J]. NEUROIMAGE, 2006, 30 (03) : 794 - 812
  • [7] Bayesian mixture modeling approach to account for heterogeneity in speed data
    Park, Byung-Jung
    Zhang, Yunlong
    Lord, Dominique
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2010, 44 (05) : 662 - 673
  • [8] A Bayesian General Linear Modeling Approach to Cortical Surface fMRI Data Analysis
    Mejia, Amanda F.
    Yue, Yu
    Bolin, David
    Lindgren, Finn
    Lindquist, Martin A.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 501 - 520
  • [9] Modeling Inter-Subject Variability in fMRI Activation Location: A Bayesian Hierarchical Spatial Model
    Xu, Lei
    Johnson, Timothy D.
    Nichols, Thomas E.
    Nee, Derek E.
    [J]. BIOMETRICS, 2009, 65 (04) : 1041 - 1051
  • [10] A Bayesian mixture modelling approach for spatial proteomics
    Crook, Oliver M.
    Mulvey, Claire M.
    Kirk, Paul D. W.
    Lilley, Kathryn S.
    Gatto, Laurent
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (11)