ELLIPTIC SYSTEMS WITH BOUNDARY BLOW-UP: EXISTENCE, UNIQUENESS AND APPLICATIONS TO REMOVABILITY OF SINGULARITIES

被引:9
|
作者
Garcia-Melian, Jorge [1 ,2 ]
Rossi, Julio D. [3 ]
Sabina de Lis, Jose C. [1 ,2 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38271, Spain
[2] Univ La Laguna, IUdEA Fis Atom Mol & Foton, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38203, Spain
[3] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
关键词
Elliptic systems; boundary blow-up; removable singularities; ASYMPTOTIC-BEHAVIOR; COMPETITION MODEL; EQUATIONS; DEGENERACY;
D O I
10.3934/cpaa.2016.15.549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the elliptic system Delta u = u(P) - v(q), Delta v = -u(r) + v(s) in Omega, where the exponents verify p, s > 1, q, r > 0 and ps > qr, and Omega is a smooth bounded domain of R-N. First, we show existence and uniqueness of boundary blow-up solutions, that is, solutions (u, v) verifying u = v = +infinity on partial derivative Omega. Then, we use them to analyze the removability of singularities of positive solutions of the system in the particular case qr <= 1, where comparison is available.
引用
收藏
页码:549 / 562
页数:14
相关论文
共 50 条