Semi-Dense Visual Odometry for AR on a Smartphone

被引:0
|
作者
Schoeps, Thomas [1 ]
Engel, Jakob [1 ]
Cremers, Daniel [1 ]
机构
[1] Tech Univ Munich, D-80290 Munich, Germany
关键词
Semi-Dense; Direct Visual Odometry; Tracking; Mapping; AR; Mobile Devices; 3D Reconstruction; NEON;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a direct monocular visual odometry system which runs in real-time on a smartphone. Being a direct method, it tracks and maps on the images themselves instead of extracted features such as keypoints. New images are tracked using direct image alignment, while geometry is represented in the form of a semi-dense depth map. Depth is estimated by filtering over many small-baseline, pixel-wise stereo comparisons. This leads to significantly less outliers and allows to map and use all image regions with sufficient gradient, including edges. We show how a simple world model for AR applications can be derived from semi-dense depth maps, and demonstrate the practical applicability in the context of an AR application in which simulated objects can collide with real geometry.
引用
收藏
页码:145 / 150
页数:6
相关论文
共 50 条
  • [1] Semi-Dense Visual Odometry for a Monocular Camera
    Engel, Jakob
    Sturm, Juergen
    Cremers, Daniel
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1449 - 1456
  • [2] A Semi-dense Direct Visual Inertial Odometry for State Estimator
    Han, Tianrui
    Zong, Qun
    Lu, Hanchen
    Tian, Bailing
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4371 - 4376
  • [3] Direct visual-inertial odometry with semi-dense mapping
    Xu, Wenju
    Choi, Dongkyu
    Wang, Guanghui
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 67 : 761 - 775
  • [4] Inertial Aided Dense & Semi-Dense Methods for Robust Direct Visual Odometry
    Falquez, Juan M.
    Kasper, Michael
    Sibley, Gabe
    [J]. 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 3601 - 3607
  • [5] Semi-dense visual-inertial odometry and mapping for computationally constrained platforms
    Wenxin Liu
    Kartik Mohta
    Giuseppe Loianno
    Kostas Daniilidis
    Vijay Kumar
    [J]. Autonomous Robots, 2021, 45 : 773 - 787
  • [6] Semi-dense visual-inertial odometry and mapping for computationally constrained platforms
    Liu, Wenxin
    Mohta, Kartik
    Loianno, Giuseppe
    Daniilidis, Kostas
    Kumar, Vijay
    [J]. AUTONOMOUS ROBOTS, 2021, 45 (06) : 773 - 787
  • [7] Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints
    Liu, Wenxin
    Loianno, Giuseppe
    Mohta, Kartik
    Daniilidis, Kostas
    Kumar, Vijay
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 3904 - 3909
  • [8] Feature-based visual odometry prior for real-time semi-dense stereo SLAM
    Krombach, Nicola
    Droeschel, David
    Houben, Sebastian
    Behnke, Sven
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 109 : 38 - 58
  • [9] Combining Feature-Based and Direct Methods for Semi-dense Real-Time Stereo Visual Odometry
    Krombach, Nicola
    Droeschel, David
    Behnke, Sven
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 14, 2017, 531 : 855 - 868
  • [10] Semi-dense stereo correspondence with dense features
    Veksler, O
    [J]. IEEE WORKSHOP ON STEREO AND MULTI-BASELINE VISION, PROCEEDINGS, 2001, : 149 - 157