Molecular sampling of prostate cancer: a dilemma for predicting disease progression

被引:181
|
作者
Sboner, Andrea [2 ]
Demichelis, Francesca [1 ,3 ]
Calza, Stefano [4 ,5 ]
Pawitan, Yudi [4 ]
Setlur, Sunita R. [6 ]
Hoshida, Yujin [7 ]
Perner, Sven [1 ]
Adami, Hans-Olov [4 ,8 ]
Fall, Katja [4 ,8 ]
Mucci, Lorelei A. [8 ,10 ,11 ]
Kantoff, Philip W. [7 ,10 ]
Stampfer, Meir [8 ,10 ,11 ]
Andersson, Swen-Olof [9 ]
Varenhorst, Eberhard [12 ]
Johansson, Jan-Erik [9 ]
Gerstein, Mark B. [2 ,13 ,14 ]
Golub, Todd R. [7 ,15 ]
Rubin, Mark A. [1 ]
Andren, Ove [9 ]
机构
[1] Weill Cornell Med Ctr, Dept Pathol & Lab Med, New York, NY USA
[2] Yale Univ, Dept Biochem & Mol Biophys, New Haven, CT 06520 USA
[3] Weill Cornell Med Ctr, Inst Computat Biomed, New York, NY USA
[4] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[5] Univ Brescia, Dept Biomed Sci & Biotechnol, Brescia, Italy
[6] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[7] Dana Farber Canc Inst, Boston, MA 02115 USA
[8] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[9] Orebro Univ Hosp, Dept Urol, SE-70185 Orebro, Sweden
[10] Harvard Univ, Sch Med, Boston, MA 02115 USA
[11] Brigham & Womens Hosp, Dept Med, Channing Lab, Boston, MA 02115 USA
[12] Linkoping Univ Hosp, Dept Urol, SE-58185 Linkoping, Sweden
[13] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[14] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[15] Broad Inst MIT & Harvard, Howard Hughes Med Inst, Cambridge, MA 02142 USA
来源
BMC MEDICAL GENOMICS | 2010年 / 3卷
关键词
TMPRSS2-ERG GENE FUSION; CIRCULATING TUMOR-CELLS; POPULATION-BASED COHORT; RADICAL PROSTATECTOMY; INTEROBSERVER REPRODUCIBILITY; INTRAEPITHELIAL NEOPLASIA; CLINICAL-IMPLICATIONS; SYSTEMIC PROGRESSION; TISSUE MICROARRAYS; TRANSITION ZONE;
D O I
10.1186/1755-8794-3-8
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models. Methods: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases. Results: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors. Conclusions: The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Molecular sampling of prostate cancer: a dilemma for predicting disease progression
    Andrea Sboner
    Francesca Demichelis
    Stefano Calza
    Yudi Pawitan
    Sunita R Setlur
    Yujin Hoshida
    Sven Perner
    Hans-Olov Adami
    Katja Fall
    Lorelei A Mucci
    Philip W Kantoff
    Meir Stampfer
    Swen-Olof Andersson
    Eberhard Varenhorst
    Jan-Erik Johansson
    Mark B Gerstein
    Todd R Golub
    Mark A Rubin
    Ove Andrén
    [J]. BMC Medical Genomics, 3
  • [2] Prostate cancer radiogenomics machine learning classification for predicting disease progression
    Murphy, R.
    Payan, N.
    Osman, S.
    Prise, K.
    Hounsell, A.
    O'Sullivan, J.
    McGarry, C.
    Jain, S.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1572 - S1574
  • [3] Role of repeated biopsy of the prostate in predicting disease progression in patients with prostate cancer on active surveillance
    Al Otaibi, Mohammed
    Ross, Philip
    Fahmy, Nader
    Jeyaganth, Suganthiny
    Trottier, Helen
    Sircar, Kanishka
    Begin, Louis R.
    Souhami, Luis
    Kassouf, Wassim
    Aprikian, Armen
    Tanguay, Simon
    [J]. CANCER, 2008, 113 (02) : 286 - 292
  • [4] Molecular profiling of prostate cancer progression
    David J. Duggan
    Jun Luo
    Jurga Sauvageot
    Michael Bittner
    Yidong Chen
    Jeff Trent
    William B. Isaacs
    [J]. Nature Genetics, 2001, 27 (Suppl 4) : 51 - 52
  • [5] Molecular biology of progression of prostate cancer
    Nupponen, N
    Visakorpi, T
    [J]. EUROPEAN UROLOGY, 1999, 35 (5-6) : 351 - 354
  • [6] Molecular Pathogenesis and Progression of Prostate Cancer
    Schrecengost, Randy
    Knudsen, Karen E.
    [J]. SEMINARS IN ONCOLOGY, 2013, 40 (03) : 244 - 258
  • [7] Gene expression signature predicting prostate cancer progression
    Wu, C-L
    Mu, X-J
    McDougal, W. S.
    Erlander, M.
    [J]. MODERN PATHOLOGY, 2008, 21 : 190A - 190A
  • [8] Gene expression signature predicting prostate cancer progression
    Wu, C-L
    Ma, X-J
    McDougal, W. S.
    Erlanger, M.
    [J]. LABORATORY INVESTIGATION, 2008, 88 : 190A - 190A
  • [9] Prostate cancer: molecular and cellular mechanisms and their implications in therapy resistance and disease progression
    Feng, Ninghan
    Huang, Jiaoti
    [J]. ASIAN JOURNAL OF ANDROLOGY, 2019, 21 (03) : 213 - 214
  • [10] Molecular model for neuroendocrine prostate cancer progression
    Chen, Ruiqi
    Dong, Xuesen
    Gleave, Martin
    [J]. BJU INTERNATIONAL, 2018, 122 (04) : 560 - 570