Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

被引:151
|
作者
Chung, Eric [1 ]
Efendiev, Yalchin [2 ]
Hou, Thomas Y. [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] CALTECH, Appl & Computat Math 9 94, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Multiscale; Multiscale finite element method; Heterogeneous media; Porous media; Numerical homogenization; DOMAIN DECOMPOSITION PRECONDITIONERS; ELLIPTIC PROBLEMS; EMPIRICAL INTERPOLATION; FLOW; HOMOGENIZATION;
D O I
10.1016/j.jcp.2016.04.054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 95
页数:27
相关论文
共 50 条
  • [1] Multiscale model reduction with generalized multiscale finite element methods
    Efendiev, Yalchin
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 749 - 766
  • [2] REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Vasilyeva, Maria
    [J]. International Journal for Multiscale Computational Engineering, 2016, 14 (06) : 535 - 554
  • [3] Nonconforming generalized multiscale finite element methods
    Lee, Chak Shing
    Sheen, Dongwoo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 215 - 229
  • [4] Generalized multiscale finite element methods (GMsFEM)
    Efendiev, Yalchin
    Galvis, Juan
    Hou, Thomas Y.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 116 - 135
  • [5] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    [J]. MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [6] Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
    D. A. Ammosov
    V. I. Vasil’ev
    M. V. Vasil’eva
    S. P. Stepanov
    [J]. Theoretical and Mathematical Physics, 2022, 211 : 595 - 610
  • [7] Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method
    Ammosov, D. A.
    Vasil'ev, V. I.
    Vasil'eva, M. V.
    Stepanov, S. P.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 211 (02) : 595 - 610
  • [8] GENERALIZED MULTISCALE FINITE ELEMENT METHODS: OVERSAMPLING STRATEGIES
    Efendiev, Yalchin
    Galvis, Juan
    Li, Guanglian
    Presho, Michael
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2014, 12 (06) : 465 - 484
  • [9] SPARSE GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND THEIR APPLICATIONS
    Chung, Eric
    Efendiev, Yalchin
    Leung, Wing Tat
    Li, Guanglian
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2016, 14 (01) : 1 - 23
  • [10] MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND APPLICATIONS
    Chung, Eric T.
    Efendiev, Yalchin
    Lee, Chak Shing
    [J]. MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 338 - 366