VORTEX DYNAMICS OF THE ANISOTROPIC GINZBURG-LANDAU EQUATION

被引:0
|
作者
Wen Huanyao [1 ]
Ding Shijin [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Anisotropic Ginzburg-Landau equation; Gronwall inequality; vortex dynamics; VORTICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Ginzburg-Landau equation in a smooth bounded domain Omega subset of R(2), that is, partial derivative(t)u(epsilon) = Sigma(2)(j,k=1) (a(jk)partial derivative(xk)u(epsilon))(xj) + b(x)(1-vertical bar u(epsilon)vertical bar(2))u(epsilon)/epsilon(2), x is an element of Omega, and conclude that each vortex b(j)(t) (j = 1, 2,..., N) satisfied db(j)(t)/dt = -(a(1k)(b(j)(t))partial derivative(xk)a(b(j)(t))/a(b(j)(t)), a(2k)(b(j)(t))partial derivative(xk)a(b(j)(t))/a(b(j)(t)), where a(x) = root a(11)a(22) - a(12)(2). We prove that all the vortices are pinned together to the critical points of a(x). Furthermore, we prove that these critical points can not be the maximum points.
引用
收藏
页码:949 / 962
页数:14
相关论文
共 50 条